A 3D hybrid integration methodology for terabit transceivers

Yunfeng Dong, T. Johansen, V. Zhurbenko, A. Beretta, A. Vannucci, G. Locatelli
{"title":"A 3D hybrid integration methodology for terabit transceivers","authors":"Yunfeng Dong, T. Johansen, V. Zhurbenko, A. Beretta, A. Vannucci, G. Locatelli","doi":"10.1109/IMOC.2015.7369143","DOIUrl":null,"url":null,"abstract":"This paper presents a three-dimensional (3D) hybrid integration methodology for terabit transceivers. The simulation methodology for multi-conductor structures are explained. The effect of ground vias on the RF circuitry and the preferred interposer substrate material for large bandwidth 3D hybrid integration are described. An equivalent circuit model of the via-throughs connecting the RF circuitry to the modulator is proposed and its lumped element parameters are extracted. Wire bonding transitions between the driving and RF circuitry were designed and simulated. An optimized 3D interposer design demonstrated a simulated -3 dB transmission bandwidth up to 95 GHz with associated return loss better than 10 dB. A thermal analysis of a subassembly for the packaged transmitter module is performed. A maximum temperature of 74 °C is predicted when copper-tungsten is used as the material of the sub-mount and heat sink layer.","PeriodicalId":431462,"journal":{"name":"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2015.7369143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a three-dimensional (3D) hybrid integration methodology for terabit transceivers. The simulation methodology for multi-conductor structures are explained. The effect of ground vias on the RF circuitry and the preferred interposer substrate material for large bandwidth 3D hybrid integration are described. An equivalent circuit model of the via-throughs connecting the RF circuitry to the modulator is proposed and its lumped element parameters are extracted. Wire bonding transitions between the driving and RF circuitry were designed and simulated. An optimized 3D interposer design demonstrated a simulated -3 dB transmission bandwidth up to 95 GHz with associated return loss better than 10 dB. A thermal analysis of a subassembly for the packaged transmitter module is performed. A maximum temperature of 74 °C is predicted when copper-tungsten is used as the material of the sub-mount and heat sink layer.
一种用于太比特收发器的三维混合集成方法
本文提出了一种用于太比特收发器的三维(3D)混合集成方法。阐述了多导体结构的仿真方法。描述了地过孔对射频电路的影响以及大带宽3D混合集成的首选中间层衬底材料。提出了连接射频电路与调制器的通孔等效电路模型,并提取了其集总元件参数。设计并仿真了驱动电路和射频电路之间的线键转换。优化后的3D中介器设计显示,模拟的-3 dB传输带宽高达95 GHz,相关回波损耗优于10 dB。对封装的发射机模块的组件进行热分析。当使用铜钨作为亚安装和散热器层的材料时,预测最高温度为74°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信