Probabilistic Hybrid Action Models for Predicting Concurrent Percept-Driven Robot Behavior

M. Beetz, H. Grosskreutz
{"title":"Probabilistic Hybrid Action Models for Predicting Concurrent Percept-Driven Robot Behavior","authors":"M. Beetz, H. Grosskreutz","doi":"10.1613/jair.1565","DOIUrl":null,"url":null,"abstract":"This paper develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern concurrent percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, and several modes of their interferences. \n \nThe main contributions of the paper are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We discuss how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results.","PeriodicalId":215268,"journal":{"name":"International Conference on Artificial Intelligence Planning Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence Planning Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1613/jair.1565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern concurrent percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, and several modes of their interferences. The main contributions of the paper are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We discuss how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results.
预测并发感知驱动机器人行为的概率混合动作模型
本文建立了概率混合动作模型(pham),这是一种现实的因果模型,用于预测现代并发感知驱动机器人计划产生的行为。pham代表了人工智能规划中使用的大多数动作模型无法表示的机器人行为方面:连续控制过程的时间结构,它们的不确定性影响,以及它们的几种干扰模式。本文的主要贡献有:(1)并发感知驱动行为模型pham及其形式化,并证明该模型产生可能的、定性准确的预测;(2)基于概率行为模型和状态描述的抽样预测的pham资源高效推理方法。我们根据分析和实验结果讨论了如何将pham应用于规划自主机器人办公室快递员的行动过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信