Separating Rank Logic from Polynomial Time

Moritz Lichter
{"title":"Separating Rank Logic from Polynomial Time","authors":"Moritz Lichter","doi":"10.1109/LICS52264.2021.9470598","DOIUrl":null,"url":null,"abstract":"In the search for a logic capturing polynomial time the most promising candidates are Choiceless Polynomial Time (CPT) and rank logic. Rank logic extends fixed-point logic with counting by a rank operator over prime fields. We show that the isomorphism problem for CFI graphs over ${{\\mathbb{Z}}_{{2^i}}}$ cannot be defined in rank logic, even if the base graph is totally ordered. However, CPT can define this isomorphism problem. We thereby separate rank logic from CPT and in particular from polynomial time.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"13 29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the search for a logic capturing polynomial time the most promising candidates are Choiceless Polynomial Time (CPT) and rank logic. Rank logic extends fixed-point logic with counting by a rank operator over prime fields. We show that the isomorphism problem for CFI graphs over ${{\mathbb{Z}}_{{2^i}}}$ cannot be defined in rank logic, even if the base graph is totally ordered. However, CPT can define this isomorphism problem. We thereby separate rank logic from CPT and in particular from polynomial time.
从多项式时间中分离秩逻辑
在寻找捕获多项式时间的逻辑时,最有希望的候选是无选择多项式时间(CPT)和秩逻辑。秩逻辑扩展了定点逻辑,使用秩算子对素数域进行计数。我们证明了${{\mathbb{Z}}_{{2^i}}}$上的CFI图的同构问题不能在秩逻辑中定义,即使基图是完全有序的。然而,CPT可以定义这个同构问题。因此我们将秩逻辑从CPT中分离出来,特别是从多项式时间中分离出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信