Gait recognition using Linear Discriminant Analysis with artificial walking conditions

Xiaxi Huang, N. Boulgouris
{"title":"Gait recognition using Linear Discriminant Analysis with artificial walking conditions","authors":"Xiaxi Huang, N. Boulgouris","doi":"10.1109/ICIP.2010.5652564","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method for the simulation of walking conditions and the generation of artificial subjects that are used for the application of Linear Discriminant Analysis. The proposed method works efficiently in situations where only one gallery sequence with one gait cycle is available for each subject in the database. The proposed method was experimentally assessed in combination with the Gait Energy Image (GEI) and the Shifted Energy Image (SEI). Very considerable improvements on the recognition and verification results are achieved.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5652564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we present a novel method for the simulation of walking conditions and the generation of artificial subjects that are used for the application of Linear Discriminant Analysis. The proposed method works efficiently in situations where only one gallery sequence with one gait cycle is available for each subject in the database. The proposed method was experimentally assessed in combination with the Gait Energy Image (GEI) and the Shifted Energy Image (SEI). Very considerable improvements on the recognition and verification results are achieved.
基于线性判别分析的人工步态识别
在本文中,我们提出了一种新的方法来模拟步行条件和生成用于应用线性判别分析的人工受试者。在数据库中每个受试者只有一个步态周期的画廊序列的情况下,该方法可以有效地工作。结合步态能量图像(GEI)和位移能量图像(SEI)对该方法进行了实验验证。在识别和验证结果上取得了相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信