Optimizing Geometric Multigrid Method Computation using a DSL Approach

Vinay Vasista, Kumudha Narasimhan, Siddharth Bhat, Uday Bondhugula
{"title":"Optimizing Geometric Multigrid Method Computation using a DSL Approach","authors":"Vinay Vasista, Kumudha Narasimhan, Siddharth Bhat, Uday Bondhugula","doi":"10.1145/3126908.3126968","DOIUrl":null,"url":null,"abstract":"The Geometric Multigrid (GMG) method is widely used in numerical analysis to accelerate the convergence of partial differential equations solvers using a hierarchy of grid discretizations. Multiple grid sizes and recursive expression of multigrid cycles make the task of program optimization tedious. A high-level language that aids domain experts for GMG with effective optimization and parallelization support is thus valuable. We demonstrate how high performance can be achieved along with enhanced programmability for GMG, with new language/optimization support in the PolyMage DSL framework. We compare our approach with (a) hand-optimized code, (b) hand-optimized code in conjunction with polyhedral optimization techniques, and (c) the existing PolyMage optimizer adapted to multigrid. We use benchmarks varying in multigrid cycle structure and smoothing steps for evaluation. On a 24-core Intel Xeon Haswell multicore system, our automatically optimized codes achieve a mean improvement of 3. 2x over straightforward parallelization, and 1. 31x over the PolyMage optimizer.CCS CONCEPTS• Software and its engineering →Compilers;","PeriodicalId":204241,"journal":{"name":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126908.3126968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Geometric Multigrid (GMG) method is widely used in numerical analysis to accelerate the convergence of partial differential equations solvers using a hierarchy of grid discretizations. Multiple grid sizes and recursive expression of multigrid cycles make the task of program optimization tedious. A high-level language that aids domain experts for GMG with effective optimization and parallelization support is thus valuable. We demonstrate how high performance can be achieved along with enhanced programmability for GMG, with new language/optimization support in the PolyMage DSL framework. We compare our approach with (a) hand-optimized code, (b) hand-optimized code in conjunction with polyhedral optimization techniques, and (c) the existing PolyMage optimizer adapted to multigrid. We use benchmarks varying in multigrid cycle structure and smoothing steps for evaluation. On a 24-core Intel Xeon Haswell multicore system, our automatically optimized codes achieve a mean improvement of 3. 2x over straightforward parallelization, and 1. 31x over the PolyMage optimizer.CCS CONCEPTS• Software and its engineering →Compilers;
用DSL方法优化几何多重网格方法的计算
几何多重网格(GMG)方法在数值分析中得到了广泛的应用,它通过分层网格离散来加速偏微分方程解的收敛。多网格大小和多网格循环的递归表达式使得程序优化任务十分繁琐。因此,帮助领域专家进行GMG并提供有效优化和并行化支持的高级语言是有价值的。通过PolyMage DSL框架中的新语言/优化支持,我们演示了GMG在增强可编程性的同时如何实现高性能。我们将我们的方法与(a)手动优化代码,(b)与多面体优化技术结合的手动优化代码,以及(c)适用于多网格的现有PolyMage优化器进行比较。我们使用在多网格循环结构和平滑步骤中变化的基准进行评估。在24核Intel Xeon Haswell多核系统上,我们的自动优化代码实现了3的平均改进。2x除以直接并行化,然后是1。超过PolyMage优化器31倍。CCS CONCEPTS•软件及其工程→编译器;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信