Meningkatkan Kualitas Prediksi Curah Hujan Musiman saat Fase ENSO Menggunakan Metode Bayesian Model Averaging (BMA), Studi Kasus: Pulau Jawa

Robi Muharsyah, D. Ratri
{"title":"Meningkatkan Kualitas Prediksi Curah Hujan Musiman saat Fase ENSO Menggunakan Metode Bayesian Model Averaging (BMA), Studi Kasus: Pulau Jawa","authors":"Robi Muharsyah, D. Ratri","doi":"10.21082/JTI.V45N1.2021.13-25","DOIUrl":null,"url":null,"abstract":"Abstrak. Ketika fase El Nino Southern Oscil l ation (ENSO), El Nino atau La Nina terjadi, Curah Hujan (CH) musiman di Pulau Jawa cenderung mengalami kondisi di Bawah Normal (BN) atau Atas Normal (AN). Oleh karena itu, prediksi CH musiman yang akurat menjadi sangat penting pada kedua fase tersebut. Model ECMWF System 4 (S4) adalah salah satu model prediksi musim yang dapat dipakai untuk menghasilkan prediksi probabilistik kejadian BN atau AN. Akan tetapi, kualitas dari keluaran langsung (RAW) model S4 masih buruk. Metode Bayesian Model Averaging (BMA) dipilih sebagai post-processing statistik untuk memperbaiki kualitas tersebut. Probability Density Function (PDF) prediktif BMA mampu menghasilkan prediksi deterministik dan probabilistik lebih akurat dari RAW model S4. Tingkat akurasi tersebut diketahui dari Root Mean Square Error (RMSE) dan Brier Score (BS) BMA lebih rendah dari RAW; RMSE Skill Score (RMSS), Brier Skill Score (BSS) dan Relative Operating Characteristic Skill Score (ROCSS) BMA lebih besar dari RAW, serta reliabilitas BMA menjadi kategori “sempurna” dan “sangat berguna” dari sebelumnya “tidak berguna” pada RAW model S4. Penerapan BMA mampu memperbaiki kualitas prediksi CH RAW model S4 sehingga prediksi CH musiman menjadi bermanfaat jika dipakai dalam pengambilan keputusan terkait kondisi iklim beberapa bulan ke depan, khususnya pada fase El Nino atau La Nina di Pulau Jawa. Abstract . When El Nino Southern Oscillation (ENSO), El Nino or La Nina phase is occurred, seasonal rainfall over Java Island tend to experience Below Normal (BN) or Above Normal (AN) conditions. Therefore, more accurate seasonal rainfall predictions are essential for both phases. The ECMWF System 4 (S4) is a seasonal prediction model which can be used to generate probabilistic predictions BN or AN event. However, the direct output (RAW) of S4 models such as rainfall prediction has poor quality. The Bayesian Model Averaging (BMA) is selected as one of the post-processing statistics to improve its quality. The predictive Probability Density Function (PDF) of BMA is able to produce deterministic and probabilistic prediction more accurately than RAW S4 models. The accuracy is known from Root Mean Square Error (RMSE), Brier Score (BS) BMA that is lower than RAW; RMSE Skill Score (RMSS), Brier Skill Score (BSS) and Relative Operating Characteristic Skill Score (ROCSS) BMA that is greater than RAW. Hence, the reliability of the BMA is changing to the “perfect” and “very useful” category from the previous “not useful” in RAW model S4. The implementation of BMA is able to improve the prediction quality of CH RAW model S4. As the result, seasonal rainfall prediction will be useful in making decisions related to climate conditions for the coming months, especially in the El Nino or La Nina phase over Java Island.","PeriodicalId":165570,"journal":{"name":"Jurnal Tanah dan Iklim","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Tanah dan Iklim","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21082/JTI.V45N1.2021.13-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstrak. Ketika fase El Nino Southern Oscil l ation (ENSO), El Nino atau La Nina terjadi, Curah Hujan (CH) musiman di Pulau Jawa cenderung mengalami kondisi di Bawah Normal (BN) atau Atas Normal (AN). Oleh karena itu, prediksi CH musiman yang akurat menjadi sangat penting pada kedua fase tersebut. Model ECMWF System 4 (S4) adalah salah satu model prediksi musim yang dapat dipakai untuk menghasilkan prediksi probabilistik kejadian BN atau AN. Akan tetapi, kualitas dari keluaran langsung (RAW) model S4 masih buruk. Metode Bayesian Model Averaging (BMA) dipilih sebagai post-processing statistik untuk memperbaiki kualitas tersebut. Probability Density Function (PDF) prediktif BMA mampu menghasilkan prediksi deterministik dan probabilistik lebih akurat dari RAW model S4. Tingkat akurasi tersebut diketahui dari Root Mean Square Error (RMSE) dan Brier Score (BS) BMA lebih rendah dari RAW; RMSE Skill Score (RMSS), Brier Skill Score (BSS) dan Relative Operating Characteristic Skill Score (ROCSS) BMA lebih besar dari RAW, serta reliabilitas BMA menjadi kategori “sempurna” dan “sangat berguna” dari sebelumnya “tidak berguna” pada RAW model S4. Penerapan BMA mampu memperbaiki kualitas prediksi CH RAW model S4 sehingga prediksi CH musiman menjadi bermanfaat jika dipakai dalam pengambilan keputusan terkait kondisi iklim beberapa bulan ke depan, khususnya pada fase El Nino atau La Nina di Pulau Jawa. Abstract . When El Nino Southern Oscillation (ENSO), El Nino or La Nina phase is occurred, seasonal rainfall over Java Island tend to experience Below Normal (BN) or Above Normal (AN) conditions. Therefore, more accurate seasonal rainfall predictions are essential for both phases. The ECMWF System 4 (S4) is a seasonal prediction model which can be used to generate probabilistic predictions BN or AN event. However, the direct output (RAW) of S4 models such as rainfall prediction has poor quality. The Bayesian Model Averaging (BMA) is selected as one of the post-processing statistics to improve its quality. The predictive Probability Density Function (PDF) of BMA is able to produce deterministic and probabilistic prediction more accurately than RAW S4 models. The accuracy is known from Root Mean Square Error (RMSE), Brier Score (BS) BMA that is lower than RAW; RMSE Skill Score (RMSS), Brier Skill Score (BSS) and Relative Operating Characteristic Skill Score (ROCSS) BMA that is greater than RAW. Hence, the reliability of the BMA is changing to the “perfect” and “very useful” category from the previous “not useful” in RAW model S4. The implementation of BMA is able to improve the prediction quality of CH RAW model S4. As the result, seasonal rainfall prediction will be useful in making decisions related to climate conditions for the coming months, especially in the El Nino or La Nina phase over Java Island.
随着ENSO阶段采用了Averaging Bayesian范例(BMA),也就是案例研究:爪哇岛,增加了季节性降水预测的质量
抽象。当南欧厄尔尼诺现象(ENSO)、厄尔尼诺现象或拉尼娜现象发生时,爪哇岛的季节性降雨量往往低于正常(BN)或高于正常(AN)。因此,CH季节性的准确预测在这两个阶段都变得非常重要。ECMWF系统4 (S4)模型是可用于生成BN或AN概率预测事件的季节性模型之一。然而,直接输出S4模型的质量仍然很差。Bayesian模型(BMA)被选为后数据处理,以提高其质量。BMA的可预测性和可预测性预测比原始模型S4更准确。准确程度是由根均值平方误差(RMSE)和Brier Score (BS)比RAW低;RMSE技能得分(rme)、Brier技能得分(BSS)和相关操作技能分数(rocacteristic技能执行)比RAW更大,BMA的可靠性是“完美”和“非常有用”的类别,比S4的原始模型“无用”之前的“无用”类别。BMA的应用将有助于提高CH RAW模型S4的质量,使季节性CH预测在未来几个月的气候条件决策中受益,尤其是在爪哇岛的厄尔尼诺或La Nina阶段。抽象。当厄尔尼诺现象(ENSO)、厄尔尼诺现象或La Nina phase出现时,有时会出现在爪哇岛,有时会出现在正常情况下。到目前为止,准确的预测对两个阶段都是至关重要的。ECMWF系统4 (S4)是一种可用于生成BN或事件可能性的预测模型。However,来自S4的直接输出是rainfall prediction的低质量。Bayesian模型平均(BMA)被指定为后统计数字之一,以增加其质量。BMA的可预测性和可预测性比原始S4模型更准确。准确是最常见的是RMSE技能分数,Brier技能分数(BSS)和相关操作技能分数(roacteristic)技能分数比原始更重要。因此,BMA的可靠性随着“完美”和“非常有用”而发生了变化,这种做法在原始模型S4中带有“非有用”的味道。BMA的实施可能会影响CH RAW型号S4的可预测性。如所述,地区rainfall的预测都将受益于对即将到来的气候条件的做出相关决定,特别是在爪哇岛的厄尔尼诺或La Nina phase。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信