Daniel Nicolas Bailon, S. Shavgulidze, J. Freudenberger
{"title":"Cell-wise encoding and decoding for TLC flash memories","authors":"Daniel Nicolas Bailon, S. Shavgulidze, J. Freudenberger","doi":"10.1109/ICCE-Berlin56473.2022.9937136","DOIUrl":null,"url":null,"abstract":"Automotive computing applications like AI databases, ADAS, and advanced infotainment systems have a huge need for persistent memory. This trend requires NAND flash memories designed for extreme automotive environments. However, the error probability of NAND flash memories has increased in recent years due to higher memory density and production tolerances. Hence, strong error correction coding is needed to meet automotive storage requirements. Many errors can be corrected by soft decoding algorithms. However, soft decoding is very resource-intensive and should be avoided when possible. NAND flash memories are organized in pages, and the error correction codes are usually encoded page-wise to reduce the latency of random reads. This page-wise encoding does not reach the maximum achievable capacity. Reading soft information increases the channel capacity but at the cost of higher latency and power consumption. In this work, we consider cell-wise encoding, which also increases the capacity compared to page-wise encoding. We analyze the cell-wise processing of data in triple-level cell (TLC) NAND flash and show the performance gain when using Low-Density Parity-Check (LDPC) codes. In addition, we investigate a coding approach with page-wise encoding and cell-wise reading.","PeriodicalId":138931,"journal":{"name":"2022 IEEE 12th International Conference on Consumer Electronics (ICCE-Berlin)","volume":"31 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Conference on Consumer Electronics (ICCE-Berlin)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Berlin56473.2022.9937136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Automotive computing applications like AI databases, ADAS, and advanced infotainment systems have a huge need for persistent memory. This trend requires NAND flash memories designed for extreme automotive environments. However, the error probability of NAND flash memories has increased in recent years due to higher memory density and production tolerances. Hence, strong error correction coding is needed to meet automotive storage requirements. Many errors can be corrected by soft decoding algorithms. However, soft decoding is very resource-intensive and should be avoided when possible. NAND flash memories are organized in pages, and the error correction codes are usually encoded page-wise to reduce the latency of random reads. This page-wise encoding does not reach the maximum achievable capacity. Reading soft information increases the channel capacity but at the cost of higher latency and power consumption. In this work, we consider cell-wise encoding, which also increases the capacity compared to page-wise encoding. We analyze the cell-wise processing of data in triple-level cell (TLC) NAND flash and show the performance gain when using Low-Density Parity-Check (LDPC) codes. In addition, we investigate a coding approach with page-wise encoding and cell-wise reading.