{"title":"Parallelized Context Modeling for Faster Image Coding","authors":"A. B. Koyuncu, Kai Cui, A. Boev, E. Steinbach","doi":"10.1109/VCIP53242.2021.9675377","DOIUrl":null,"url":null,"abstract":"Learning-based image compression has reached the performance of classical methods such as BPG. One common approach is to use an autoencoder network to map the pixel information to a latent space and then approximate the symbol probabilities in that space with a context model. During inference, the learned context model provides symbol probabilities, which are used by the entropy encoder to obtain the bitstream. Currently, the most effective context models use autoregression, but autoregression results in a very high decoding complexity due to the serialized data processing. In this work, we propose a method to parallelize the autoregressive process used for image compression. In our experiments, we achieve a decoding speed that is over 8 times faster than the standard autoregressive context model almost without compression performance reduction.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Learning-based image compression has reached the performance of classical methods such as BPG. One common approach is to use an autoencoder network to map the pixel information to a latent space and then approximate the symbol probabilities in that space with a context model. During inference, the learned context model provides symbol probabilities, which are used by the entropy encoder to obtain the bitstream. Currently, the most effective context models use autoregression, but autoregression results in a very high decoding complexity due to the serialized data processing. In this work, we propose a method to parallelize the autoregressive process used for image compression. In our experiments, we achieve a decoding speed that is over 8 times faster than the standard autoregressive context model almost without compression performance reduction.