Local Semantic Classification of Natural Image Based on Spatial Context

Weining Wang, Jingjian Yi, Haopan Li, Yinzhe Lu
{"title":"Local Semantic Classification of Natural Image Based on Spatial Context","authors":"Weining Wang, Jingjian Yi, Haopan Li, Yinzhe Lu","doi":"10.1109/ICIG.2011.126","DOIUrl":null,"url":null,"abstract":"Image classification is a challenging research topic in image analyzing, and it is widely used in the area of image labelling and image semantic retrieval. In this paper, we first define a set of local semantic concepts to describe the local scene content, and then use the AdaBoost classifier to recognize the local semantics of the natural scene images. Furthermore, we propose three rules based on spatial context, which are semantic filtering, horizontal boundary and relative position of Sky, so as to improve the recognition accuracy of the local image semantic. Experiment result shows the effectiveness of our model.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image classification is a challenging research topic in image analyzing, and it is widely used in the area of image labelling and image semantic retrieval. In this paper, we first define a set of local semantic concepts to describe the local scene content, and then use the AdaBoost classifier to recognize the local semantics of the natural scene images. Furthermore, we propose three rules based on spatial context, which are semantic filtering, horizontal boundary and relative position of Sky, so as to improve the recognition accuracy of the local image semantic. Experiment result shows the effectiveness of our model.
基于空间上下文的自然图像局部语义分类
图像分类是图像分析中一个具有挑战性的研究课题,广泛应用于图像标注和图像语义检索等领域。本文首先定义一组局部语义概念来描述局部场景内容,然后利用AdaBoost分类器对自然场景图像的局部语义进行识别。在此基础上,提出了基于空间上下文的语义滤波、水平边界和Sky相对位置三条规则,提高了局部图像语义的识别精度。实验结果表明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信