An Efficient Multi-View Multimodal Data Processing Framework for Social Media Popularity Prediction

Yunpeng Tan, Fang Liu, Bowei Li, Zheng Zhang, Bo Zhang
{"title":"An Efficient Multi-View Multimodal Data Processing Framework for Social Media Popularity Prediction","authors":"Yunpeng Tan, Fang Liu, Bowei Li, Zheng Zhang, Bo Zhang","doi":"10.1145/3503161.3551607","DOIUrl":null,"url":null,"abstract":"Popularity of social media is an important symbol of its communication power. Predictions of social media popularity have tremendous business and social value. In this paper, we propose an efficient multimodal data processing framework, which can comprehensively extract the multi-view features from multimodal social media data and achieve accurate popularity prediction. We utilize Transformer and sliding window average to extract time series features of posts, utilize CatBoost to calculate the importance of different features, and integrate important features extracted from multiple views for accurate prediction of social media popularity. We evaluate our proposed approach with the Social Media Prediction Dataset. Experimental results show that our approach achieves excellent performance in the social media popularity prediction task.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3551607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Popularity of social media is an important symbol of its communication power. Predictions of social media popularity have tremendous business and social value. In this paper, we propose an efficient multimodal data processing framework, which can comprehensively extract the multi-view features from multimodal social media data and achieve accurate popularity prediction. We utilize Transformer and sliding window average to extract time series features of posts, utilize CatBoost to calculate the importance of different features, and integrate important features extracted from multiple views for accurate prediction of social media popularity. We evaluate our proposed approach with the Social Media Prediction Dataset. Experimental results show that our approach achieves excellent performance in the social media popularity prediction task.
面向社交媒体流行度预测的高效多视图多模态数据处理框架
社交媒体的受欢迎程度是其传播能力的重要标志。对社交媒体受欢迎程度的预测具有巨大的商业和社会价值。本文提出了一种高效的多模态数据处理框架,可以从多模态社交媒体数据中全面提取多视图特征,实现准确的人气预测。我们利用Transformer和滑动窗口平均提取帖子的时间序列特征,利用CatBoost计算不同特征的重要性,并整合从多个视图中提取的重要特征,以准确预测社交媒体的流行度。我们用社交媒体预测数据集评估了我们提出的方法。实验结果表明,我们的方法在社交媒体人气预测任务中取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信