Ant colony optimization for the K-means algorithm in image segmentation

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900075
C. Hung, Mojia Sun
{"title":"Ant colony optimization for the K-means algorithm in image segmentation","authors":"C. Hung, Mojia Sun","doi":"10.1145/1900008.1900075","DOIUrl":null,"url":null,"abstract":"In this paper the ant colony optimization (ACO) is used in the K-means algorithm for improving the image segmentation. The learning mechanism of this algorithm is formulated by using the ACO meta-heuristic. As the pheromone dominates the exploration of ants for problem solutions, preliminary experiments on pheromone's update are reported. Two methods for defining and updating pheromone values are proposed and tested: one with the spatial coordinate distances and the other without using such a distance. The ACO improves the K-means algorithm by making it less dependent on the initial parameters.","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper the ant colony optimization (ACO) is used in the K-means algorithm for improving the image segmentation. The learning mechanism of this algorithm is formulated by using the ACO meta-heuristic. As the pheromone dominates the exploration of ants for problem solutions, preliminary experiments on pheromone's update are reported. Two methods for defining and updating pheromone values are proposed and tested: one with the spatial coordinate distances and the other without using such a distance. The ACO improves the K-means algorithm by making it less dependent on the initial parameters.
蚁群算法在图像分割中的应用
本文将蚁群算法应用于K-means算法中,对图像分割进行改进。该算法的学习机制采用蚁群算法的元启发式。由于信息素在蚂蚁对问题解决的探索中占据主导地位,本文报道了信息素更新的初步实验。提出并测试了两种定义和更新信息素值的方法:一种是使用空间坐标距离,另一种是不使用空间坐标距离。蚁群算法通过减少对初始参数的依赖来改进K-means算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信