Tagging fireworkers activities from body sensors under distribution drift

M. Boullé
{"title":"Tagging fireworkers activities from body sensors under distribution drift","authors":"M. Boullé","doi":"10.15439/2015F423","DOIUrl":null,"url":null,"abstract":"We describe our submission to the AAIA'15 Data Mining Competition, where the objective is to tag the activity of firefighters based on vital functions and movement sensor readings. Our solution exploits a selective naive Bayes classifier, with optimal preprocessing, variable selection and model averaging, together with an automatic variable construction method that builds many variables from time series records. The most challenging part of the challenge is that the input variables are not independent and identically distributed (i.i.d.) between the train and test datasets. We suggest a methodology to alleviate this problem, that enabled to get a final score of 0.76 (team marcb).","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We describe our submission to the AAIA'15 Data Mining Competition, where the objective is to tag the activity of firefighters based on vital functions and movement sensor readings. Our solution exploits a selective naive Bayes classifier, with optimal preprocessing, variable selection and model averaging, together with an automatic variable construction method that builds many variables from time series records. The most challenging part of the challenge is that the input variables are not independent and identically distributed (i.i.d.) between the train and test datasets. We suggest a methodology to alleviate this problem, that enabled to get a final score of 0.76 (team marcb).
分布漂移下身体传感器对消防员活动的标记
我们描述了我们提交给AAIA'15数据挖掘竞赛的作品,其目标是根据重要功能和运动传感器读数标记消防员的活动。我们的解决方案利用了选择性朴素贝叶斯分类器,具有最佳的预处理,变量选择和模型平均,以及从时间序列记录中构建许多变量的自动变量构建方法。挑战中最具挑战性的部分是输入变量在训练和测试数据集之间不是独立和同分布的(i.i.d)。我们建议一种方法来缓解这个问题,使最终得分0.76(团队得分)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信