Short-term traffic flow prediction based on optimised support vector regression

Yang Xu, Da-wei Hu, Bing Su
{"title":"Short-term traffic flow prediction based on optimised support vector regression","authors":"Yang Xu, Da-wei Hu, Bing Su","doi":"10.1504/IJADS.2017.10005300","DOIUrl":null,"url":null,"abstract":"In order to provide accurate and reliable prediction of short-term traffic flow to realise intelligent transportation control, support vector machine (SVM) regression method is established to predict short-term traffic flow. Then, parameter selection optimisation model for SVM is studied. Support vector penalty coefficient and the parameters of the kernel function play an important role in learning precision and generalisation ability of regression model. So, a kind of improved artificial fish swarm algorithm is used to optimise the SVM regression to select the optimal parameters. The experiment results show that the proposed scheme can effectively reduce mean absolute percentage error and mean square error in the real traffic flow forecasting. The proposed scheme can improve the prediction precision of the short-term traffic flow.","PeriodicalId":216414,"journal":{"name":"Int. J. Appl. Decis. Sci.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJADS.2017.10005300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to provide accurate and reliable prediction of short-term traffic flow to realise intelligent transportation control, support vector machine (SVM) regression method is established to predict short-term traffic flow. Then, parameter selection optimisation model for SVM is studied. Support vector penalty coefficient and the parameters of the kernel function play an important role in learning precision and generalisation ability of regression model. So, a kind of improved artificial fish swarm algorithm is used to optimise the SVM regression to select the optimal parameters. The experiment results show that the proposed scheme can effectively reduce mean absolute percentage error and mean square error in the real traffic flow forecasting. The proposed scheme can improve the prediction precision of the short-term traffic flow.
基于优化支持向量回归的短期交通流预测
为了提供准确、可靠的短期交通流预测,实现智能交通控制,建立了支持向量机(SVM)回归方法对短期交通流进行预测。然后,研究了支持向量机的参数选择优化模型。支持向量惩罚系数和核函数参数对回归模型的学习精度和泛化能力起着重要的作用。为此,采用一种改进的人工鱼群算法对支持向量机回归进行优化,选择最优参数。实验结果表明,该方法能有效降低实际交通流预测中的平均绝对百分比误差和均方误差。该方法可以提高短时交通流的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信