Gröbner bases over algebraic number fields

Dereje Kifle Boku, C. Fieker, W. Decker, Andreas Steenpaß
{"title":"Gröbner bases over algebraic number fields","authors":"Dereje Kifle Boku, C. Fieker, W. Decker, Andreas Steenpaß","doi":"10.1145/2790282.2790284","DOIUrl":null,"url":null,"abstract":"Although Buchberger's algorithm, in theory, allows us to compute Gröbner bases over any field, in practice, however, the computational efficiency depends on the arithmetic of the ground field. Consider a field K = Q(α), a simple extension of Q, where α is an algebraic number, and let f ∈ Q[t] be the minimal polynomial of α. In this paper we present a new efficient method to compute Gröbner bases in polynomial rings over the algebraic number field K. Starting from the ideas of Noro [11], we proceed by joining f to the ideal to be considered, adding t as an extra variable. But instead of avoiding superfluous S-pair reductions by inverting algebraic numbers, we achieve the same goal by applying modular methods as in [2, 3, 10], that is, by inferring information in characteristic zero from information in characteristic p > 0. For suitable primes p, the minimal polynomial f is reducible over Fp. This allows us to apply modular methods once again, on a second level, with respect to the factors of f. The algorithm thus resembles a divide and conquer strategy and is in particular easily parallelizable. At current state, the algorithm is probabilistic in the sense that, as for other modular Gröbner basis computations, an effective final verification test is only known for homogeneous ideals or for local monomial orderings. The presented timings show that for most examples, our algorithm, which has been implemented in Singular [7], outperforms other known methods by far.","PeriodicalId":384227,"journal":{"name":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790282.2790284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Although Buchberger's algorithm, in theory, allows us to compute Gröbner bases over any field, in practice, however, the computational efficiency depends on the arithmetic of the ground field. Consider a field K = Q(α), a simple extension of Q, where α is an algebraic number, and let f ∈ Q[t] be the minimal polynomial of α. In this paper we present a new efficient method to compute Gröbner bases in polynomial rings over the algebraic number field K. Starting from the ideas of Noro [11], we proceed by joining f to the ideal to be considered, adding t as an extra variable. But instead of avoiding superfluous S-pair reductions by inverting algebraic numbers, we achieve the same goal by applying modular methods as in [2, 3, 10], that is, by inferring information in characteristic zero from information in characteristic p > 0. For suitable primes p, the minimal polynomial f is reducible over Fp. This allows us to apply modular methods once again, on a second level, with respect to the factors of f. The algorithm thus resembles a divide and conquer strategy and is in particular easily parallelizable. At current state, the algorithm is probabilistic in the sense that, as for other modular Gröbner basis computations, an effective final verification test is only known for homogeneous ideals or for local monomial orderings. The presented timings show that for most examples, our algorithm, which has been implemented in Singular [7], outperforms other known methods by far.
Gröbner代数数域上的基
虽然Buchberger的算法在理论上允许我们计算任何场的Gröbner基,但在实践中,计算效率取决于地面场的算法。考虑一个域K = Q(α),是Q的一个简单扩展,其中α是一个代数数,设f∈Q[t]是α的最小多项式。本文提出了一种新的计算代数数域k上多项式环中Gröbner基的有效方法,从Noro[11]的思想出发,我们将f加入到要考虑的理想中,并将t作为一个额外的变量。但是,我们并没有通过逆代数数来避免多余的s对约简,而是采用与[2,3,10]相同的模方法,即从特征p > 0的信息中推断特征0的信息,从而实现了相同的目标。对于合适的素数p,最小多项式f可约于Fp。这允许我们再次应用模块化方法,在第二级,相对于f的因素。因此,该算法类似于分而治之的策略,特别容易并行化。在目前的状态下,该算法是概率性的,因为对于其他模Gröbner基计算,有效的最终验证测试只知道齐次理想或局部单项式排序。给出的时序表明,对于大多数示例,我们的算法(已经在Singular[7]中实现)到目前为止优于其他已知方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信