Transient stability evaluation using an artificial neural network (power systems)

K. Omata, K. Tanomura
{"title":"Transient stability evaluation using an artificial neural network (power systems)","authors":"K. Omata, K. Tanomura","doi":"10.1109/ANN.1993.264301","DOIUrl":null,"url":null,"abstract":"This paper describes a power system transient stability evaluation method using an artificial neural network (ANN). To improve the accuracy of the evaluation, the authors propose a new type of training signal which is a reciprocal of the action time of a step-out relay (SOR) after the fault occurrence. In simulation results of a 16-bus system, the evaluation accuracy of the ANN trained using the proposed training signal is about 20 percent more accurate than that of an ANN trained using the conventional 0/1 digital signal.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a power system transient stability evaluation method using an artificial neural network (ANN). To improve the accuracy of the evaluation, the authors propose a new type of training signal which is a reciprocal of the action time of a step-out relay (SOR) after the fault occurrence. In simulation results of a 16-bus system, the evaluation accuracy of the ANN trained using the proposed training signal is about 20 percent more accurate than that of an ANN trained using the conventional 0/1 digital signal.<>
基于人工神经网络的暂态稳定评估(电力系统)
本文介绍了一种基于人工神经网络的电力系统暂态稳定评估方法。为了提高评估的准确性,作者提出了一种新的训练信号,该训练信号是故障发生后步进继电器动作时间的倒数。在一个16总线系统的仿真结果中,使用所提出的训练信号训练的人工神经网络的评估精度比使用传统的0/1数字信号训练的人工神经网络的评估精度提高了约20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信