Metric and Latticial Medians

O. Hudry, B. Leclerc, B. Monjardet, J. Barthélemy
{"title":"Metric and Latticial Medians","authors":"O. Hudry, B. Leclerc, B. Monjardet, J. Barthélemy","doi":"10.1002/9780470611876.CH20","DOIUrl":null,"url":null,"abstract":"This paper presents the -linked- notions of metric and latticial medians and it explains what is the median procedure for the consensus problems, in particular in the case of the aggregation of linear orders. First we consider the medians of a v-tuple of arbitrary or particular binary relations.. Then we study in depth the difficult (in fact NP-difficult) problem of finding the median orders of a profile of linear orders. More generally, we consider the medians of v-tuples of elements of a semilattice and we describe the median semilattices, i.e. the semilattices were medians are easily computable.","PeriodicalId":112888,"journal":{"name":"Decision-making Process","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision-making Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470611876.CH20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents the -linked- notions of metric and latticial medians and it explains what is the median procedure for the consensus problems, in particular in the case of the aggregation of linear orders. First we consider the medians of a v-tuple of arbitrary or particular binary relations.. Then we study in depth the difficult (in fact NP-difficult) problem of finding the median orders of a profile of linear orders. More generally, we consider the medians of v-tuples of elements of a semilattice and we describe the median semilattices, i.e. the semilattices were medians are easily computable.
度量和网格中位数
本文给出了度量中值和格中值的关联概念,并解释了一致问题的中值过程,特别是在线性阶的集合情况下。首先,我们考虑任意或特定二元关系的v元组的中位数。然后,我们深入研究了寻找线性阶轮廓的中值阶的困难(实际上是np困难)问题。更一般地说,我们考虑半格元素的v元组的中位数,并描述中位数半格,即中位数易于计算的半格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信