Enhancing temporal alignment with autoencoder regularization

Liquan Nie, Yuanyuan Wang, Xiang Zhang, Xuhui Huang, Zhigang Luo
{"title":"Enhancing temporal alignment with autoencoder regularization","authors":"Liquan Nie, Yuanyuan Wang, Xiang Zhang, Xuhui Huang, Zhigang Luo","doi":"10.1109/IJCNN.2016.7727840","DOIUrl":null,"url":null,"abstract":"Temporal alignment aligns two temporal sequences and is quite challenging due to drastic differences among temporal sequences and source data from different views. Canonical time warping (CTW) has shown great potential in temporal alignment tasks because it can reduce data redundancy by transforming high-dimensional data to a lower-dimensional subspace via canonical correlation analysis (CCA). However, CTW cannot uncover the underlying nonlinear structure embedded in the dataset. In this paper, we propose an autoencoder regularized canonical time warping method (AECTW) to overcome this drawback. Specifically, AECTW enhances lower-dimensional representation of each sequence by incorporating an autoencoder regularization, meanwhile reveals the nonlinear structure of features by explicit nonlinear transformation. By these strategies, AECTW significantly boosts CTW in temporal alignment tasks. Experiments on both synthetic data and two practical human action datasets demonstrate that AECTW outperforms the representative DTW-based methods.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Temporal alignment aligns two temporal sequences and is quite challenging due to drastic differences among temporal sequences and source data from different views. Canonical time warping (CTW) has shown great potential in temporal alignment tasks because it can reduce data redundancy by transforming high-dimensional data to a lower-dimensional subspace via canonical correlation analysis (CCA). However, CTW cannot uncover the underlying nonlinear structure embedded in the dataset. In this paper, we propose an autoencoder regularized canonical time warping method (AECTW) to overcome this drawback. Specifically, AECTW enhances lower-dimensional representation of each sequence by incorporating an autoencoder regularization, meanwhile reveals the nonlinear structure of features by explicit nonlinear transformation. By these strategies, AECTW significantly boosts CTW in temporal alignment tasks. Experiments on both synthetic data and two practical human action datasets demonstrate that AECTW outperforms the representative DTW-based methods.
用自编码器正则化增强时间对齐
时间序列比对是对两个时间序列的比对,由于时间序列和不同视角的源数据存在巨大差异,因此具有很大的挑战性。规范化时间规整(CTW)通过规范化相关分析(CCA)将高维数据转换为低维子空间,从而减少数据冗余,在时间对齐任务中显示出巨大的潜力。然而,CTW无法揭示数据集中嵌入的潜在非线性结构。在本文中,我们提出了一种自编码器正则化规范时间规整方法(AECTW)来克服这一缺点。具体而言,AECTW通过引入自编码器正则化来增强每个序列的低维表示,同时通过显式非线性变换来揭示特征的非线性结构。通过这些策略,AECTW显著提高了时间对齐任务的CTW。在合成数据和两个实际人体动作数据集上的实验表明,AECTW优于具有代表性的基于dtw的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信