Deep learning economic model predictive control for refinery operation: A fluid catalytic cracker - fractionator case study

Omar Santander, Vidyashankar Kuppuraj, Christopher A. Harrison, M. Baldea
{"title":"Deep learning economic model predictive control for refinery operation: A fluid catalytic cracker - fractionator case study","authors":"Omar Santander, Vidyashankar Kuppuraj, Christopher A. Harrison, M. Baldea","doi":"10.1109/ICSTCC55426.2022.9931761","DOIUrl":null,"url":null,"abstract":"An integrated deep learning - economic model predictive control (EMPC) framework for large scale processes is presented. The framework is successfully implemented to a realistic fluid catalytic cracker (FCC) - fractionator process. Scenarios under the effect of no disturbances (nominal) and with disturbances are simulated demonstrating fast computation (potentially allowing industrial implementation) and improved performance (taking into account process nonlinear behavior, enhancing the process operating profit).","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An integrated deep learning - economic model predictive control (EMPC) framework for large scale processes is presented. The framework is successfully implemented to a realistic fluid catalytic cracker (FCC) - fractionator process. Scenarios under the effect of no disturbances (nominal) and with disturbances are simulated demonstrating fast computation (potentially allowing industrial implementation) and improved performance (taking into account process nonlinear behavior, enhancing the process operating profit).
炼油厂运行的深度学习经济模型预测控制:一个流体催化裂化分馏装置的案例研究
提出了一种大规模过程的深度学习-经济模型预测控制(EMPC)集成框架。该框架已成功应用于实际的催化裂化-分馏工艺。在无干扰(名义上)和有干扰的情况下,模拟了快速计算(可能允许工业实施)和改进的性能(考虑过程非线性行为,提高过程运营利润)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信