Experiments with sparse Cholesky using a sequential task-flow implementation

I. Duff, J. Hogg, Florent Lopez
{"title":"Experiments with sparse Cholesky using a sequential task-flow implementation","authors":"I. Duff, J. Hogg, Florent Lopez","doi":"10.3934/NACO.2018014","DOIUrl":null,"url":null,"abstract":"We describe the development of a prototype code for the solution of large sparse symmetric positive definite systems that is efficient on parallel architectures. We implement a DAG-based Cholesky factorization that offers good performance and scalability on multicore architectures. Our approach uses a runtime system to execute the DAG. The runtime system plays the role of a software layer between the application and the architecture and handles the management of task dependencies as well as the task scheduling. In this model, the application is expressed using a high-level API, independent of the hardware details, thus enabling portability across different architectures. Although widely used in dense linear algebra, this approach is nevertheless challenging for sparse algorithms because of the irregularity and variable granularity of the DAGs arising in these systems. We assess the ability of two different Sequential Task Flow implementations to address this challenge: one implemented with the OpenMP standard, and the other with the modern runtime system StarPU. We compare these implementations to the state-of-the-art solver HSL_MA87 and demonstrate comparable performance on a multicore architecture.","PeriodicalId":407290,"journal":{"name":"Rutherford Appleton Laboratory Technical Reports","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rutherford Appleton Laboratory Technical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/NACO.2018014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We describe the development of a prototype code for the solution of large sparse symmetric positive definite systems that is efficient on parallel architectures. We implement a DAG-based Cholesky factorization that offers good performance and scalability on multicore architectures. Our approach uses a runtime system to execute the DAG. The runtime system plays the role of a software layer between the application and the architecture and handles the management of task dependencies as well as the task scheduling. In this model, the application is expressed using a high-level API, independent of the hardware details, thus enabling portability across different architectures. Although widely used in dense linear algebra, this approach is nevertheless challenging for sparse algorithms because of the irregularity and variable granularity of the DAGs arising in these systems. We assess the ability of two different Sequential Task Flow implementations to address this challenge: one implemented with the OpenMP standard, and the other with the modern runtime system StarPU. We compare these implementations to the state-of-the-art solver HSL_MA87 and demonstrate comparable performance on a multicore architecture.
实验用稀疏Cholesky实现了一个顺序任务流
我们描述了一个求解大型稀疏对称正定系统的原型代码的开发,该代码在并行架构上是有效的。我们实现了一个基于dag的Cholesky分解,它在多核架构上提供了良好的性能和可扩展性。我们的方法使用运行时系统来执行DAG。运行时系统在应用程序和体系结构之间扮演软件层的角色,处理任务依赖关系的管理以及任务调度。在此模型中,应用程序使用高级API表示,独立于硬件细节,从而支持跨不同体系结构的可移植性。尽管在密集线性代数中广泛使用,但由于在这些系统中产生的dag的不规则性和可变粒度,这种方法对稀疏算法仍然具有挑战性。我们评估了两种不同的顺序任务流实现来应对这一挑战的能力:一种使用OpenMP标准实现,另一种使用现代运行时系统StarPU。我们将这些实现与最先进的求解器HSL_MA87进行比较,并在多核体系结构上演示可比较的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信