On solvability of the first Hochschild cohomology of a finite-dimensional algebra

F. Eisele, Theo Raedschelders
{"title":"On solvability of the first Hochschild cohomology of a finite-dimensional algebra","authors":"F. Eisele, Theo Raedschelders","doi":"10.1090/tran/8064","DOIUrl":null,"url":null,"abstract":"For an arbitrary finite-dimensional algebra $A$, we introduce a general approach to determining when its first Hochschild cohomology ${\\rm HH}^1(A)$, considered as a Lie algebra, is solvable. If $A$ is moreover of tame or finite representation type, we are able to describe ${\\rm HH}^1(A)$ as the direct sum of a solvable Lie algebra and a sum of copies of $\\mathfrak{sl}_2$. We proceed to determine the exact number of such copies, and give an explicit formula for this number in terms of certain chains of Kronecker subquivers of the quiver of $A$. As a corollary, we obtain a precise answer to a question posed by Chaparro, Schroll and Solotar.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

For an arbitrary finite-dimensional algebra $A$, we introduce a general approach to determining when its first Hochschild cohomology ${\rm HH}^1(A)$, considered as a Lie algebra, is solvable. If $A$ is moreover of tame or finite representation type, we are able to describe ${\rm HH}^1(A)$ as the direct sum of a solvable Lie algebra and a sum of copies of $\mathfrak{sl}_2$. We proceed to determine the exact number of such copies, and give an explicit formula for this number in terms of certain chains of Kronecker subquivers of the quiver of $A$. As a corollary, we obtain a precise answer to a question posed by Chaparro, Schroll and Solotar.
有限维代数第一Hochschild上同调的可解性
对于任意有限维代数$A$,我们引入了一种一般方法来确定它的第一个Hochschild上同调${\rm HH}^1(A)$作为李代数,何时是可解的。如果$A$是单调的或有限的表示类型,我们可以将${\rm HH}^1(A)$描述为一个可解李代数与$\mathfrak{sl}_2$的拷贝和。我们进一步确定了这样的副本的确切数目,并给出了这个数目在$A$的颤振的若干Kronecker子颤链上的显式公式。作为推论,我们得到了Chaparro, Schroll和Solotar提出的一个问题的精确答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信