Multi-view Clustering of Visual Words Using Canonical Correlation Analysis for Human Action Recognition

Behrouz Saghafi, D. Rajan
{"title":"Multi-view Clustering of Visual Words Using Canonical Correlation Analysis for Human Action Recognition","authors":"Behrouz Saghafi, D. Rajan","doi":"10.1109/ICMLA.2010.102","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for introducing semantic relations into the bag-of-words framework for recognizing human actions. We represent visual words in two different views: the original features and the document co-occurrence representation. The latter view conveys semantic relations but is large, sparse and noisy. We use canonical correlation analysis between the two views to find a subspace in which the words are more semantically distributed. We apply k-means clustering in the computed space to find semantically meaningful clusters and use them as the semantic visual vocabulary. Incorporating the semantic visual vocabulary the features are quantized to form more discriminative histograms. Eventually the histograms are classified using an SVM classifier. We have tested our approach on KTH action dataset and achieved promising results.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a novel approach for introducing semantic relations into the bag-of-words framework for recognizing human actions. We represent visual words in two different views: the original features and the document co-occurrence representation. The latter view conveys semantic relations but is large, sparse and noisy. We use canonical correlation analysis between the two views to find a subspace in which the words are more semantically distributed. We apply k-means clustering in the computed space to find semantically meaningful clusters and use them as the semantic visual vocabulary. Incorporating the semantic visual vocabulary the features are quantized to form more discriminative histograms. Eventually the histograms are classified using an SVM classifier. We have tested our approach on KTH action dataset and achieved promising results.
基于典型相关分析的视觉词多视图聚类研究
在本文中,我们提出了一种将语义关系引入词袋框架以识别人类行为的新方法。我们从两种不同的角度来表示视觉词:原始特征表示和文档共现表示。后一种视图传达语义关系,但大,稀疏和嘈杂。我们使用两个视图之间的典型相关分析来找到一个词在语义上更分布的子空间。我们在计算空间中应用k-means聚类来寻找语义上有意义的聚类,并将其用作语义视觉词汇。结合语义视觉词汇,对特征进行量化,形成更具判别性的直方图。最后使用支持向量机分类器对直方图进行分类。我们已经在KTH动作数据集上测试了我们的方法,并取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信