ABNN 2

Liyan Shen, Ye Dong, Binxing Fang, Jinqiao Shi, Xuebin Wang, Shengli Pan, Ruisheng Shi
{"title":"ABNN\n <sup>2</sup>","authors":"Liyan Shen, Ye Dong, Binxing Fang, Jinqiao Shi, Xuebin Wang, Shengli Pan, Ruisheng Shi","doi":"10.1145/3489517.3530680","DOIUrl":null,"url":null,"abstract":"Data privacy and security issues are preventing a lot of potential on-cloud machine learning as services from happening. In the recent past, secure multi-party computation (MPC) has been used to achieve the secure neural network predictions, guaranteeing the privacy of data. However, the cost of the existing two-party solutions is expensive and they are impractical in real-world setting. In this work, we utilize the advantages of quantized neural network (QNN) and MPC to present ABNN2, a practical secure two-party framework that can realize arbitrary-bitwidth quantized neural network predictions. Concretely, we propose an efficient and novel matrix multiplication protocol based on 1-out-of-N OT extension and optimize the the protocol through a parallel scheme. In addition, we design optimized protocol for the ReLU function. The experiments demonstrate that our protocols are about 2X-36X and 1.4X--7X faster than SecureML (S&P'17) and MiniONN (CCS'17) respectively. And ABNN2 obtain comparable efficiency as state of the art QNN prediction protocol QUOTIENT (CCS'19), but the later only supports ternary neural network.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data privacy and security issues are preventing a lot of potential on-cloud machine learning as services from happening. In the recent past, secure multi-party computation (MPC) has been used to achieve the secure neural network predictions, guaranteeing the privacy of data. However, the cost of the existing two-party solutions is expensive and they are impractical in real-world setting. In this work, we utilize the advantages of quantized neural network (QNN) and MPC to present ABNN2, a practical secure two-party framework that can realize arbitrary-bitwidth quantized neural network predictions. Concretely, we propose an efficient and novel matrix multiplication protocol based on 1-out-of-N OT extension and optimize the the protocol through a parallel scheme. In addition, we design optimized protocol for the ReLU function. The experiments demonstrate that our protocols are about 2X-36X and 1.4X--7X faster than SecureML (S&P'17) and MiniONN (CCS'17) respectively. And ABNN2 obtain comparable efficiency as state of the art QNN prediction protocol QUOTIENT (CCS'19), but the later only supports ternary neural network.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信