Anomaly Traffic Detection with Federated Learning toward Network-based Malware Detection in IoT

T. Nishio, Masataka Nakahara, Norihiro Okui, A. Kubota, Yasuaki Kobayashi, K. Sugiyama, R. Shinkuma
{"title":"Anomaly Traffic Detection with Federated Learning toward Network-based Malware Detection in IoT","authors":"T. Nishio, Masataka Nakahara, Norihiro Okui, A. Kubota, Yasuaki Kobayashi, K. Sugiyama, R. Shinkuma","doi":"10.1109/GLOBECOM48099.2022.10000633","DOIUrl":null,"url":null,"abstract":"To mitigate cyberattacks, detecting anomalies in network traffic is of key importance. In this paper, we propose a model training method for detection of Internet of Things (IoT) anomalous traffic that is robust against the contamination of anomalous samples in the training set. The key idea is to focus on the nature of IoT malware infections (i.e., only a limited number of IoT networks contain infected devices) and employ federated learning (FL) to mitigate the impact of anomalous samples on model training. The simulation evaluation using IoT traffic data obtained from residences and malware traffic data collected from sandbox experiments demonstrates that the proposed method does not cause accuracy degradation even when the anomalous samples are contaminated, in contrast with the detection accuracy of baseline methods, which does degrade.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10000633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To mitigate cyberattacks, detecting anomalies in network traffic is of key importance. In this paper, we propose a model training method for detection of Internet of Things (IoT) anomalous traffic that is robust against the contamination of anomalous samples in the training set. The key idea is to focus on the nature of IoT malware infections (i.e., only a limited number of IoT networks contain infected devices) and employ federated learning (FL) to mitigate the impact of anomalous samples on model training. The simulation evaluation using IoT traffic data obtained from residences and malware traffic data collected from sandbox experiments demonstrates that the proposed method does not cause accuracy degradation even when the anomalous samples are contaminated, in contrast with the detection accuracy of baseline methods, which does degrade.
基于联邦学习的物联网网络恶意软件异常流量检测
为了减轻网络攻击,检测网络流量中的异常是至关重要的。在本文中,我们提出了一种用于检测物联网(IoT)异常流量的模型训练方法,该方法对训练集中异常样本的污染具有鲁棒性。关键思想是关注物联网恶意软件感染的本质(即,只有有限数量的物联网网络包含受感染的设备),并采用联邦学习(FL)来减轻异常样本对模型训练的影响。使用从住宅获得的物联网流量数据和从沙盒实验收集的恶意软件流量数据进行仿真评估表明,与基线方法的检测精度下降相比,即使在异常样本被污染的情况下,所提出的方法也不会导致精度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信