3-Dimensional Convolution Based Iterative Model for Efficient Motion Map Generation for Representing Video Discriminative Information

Sheeraz Arif, Wang Wangjing
{"title":"3-Dimensional Convolution Based Iterative Model for Efficient Motion Map Generation for Representing Video Discriminative Information","authors":"Sheeraz Arif, Wang Wangjing","doi":"10.1109/ICVRV.2017.00111","DOIUrl":null,"url":null,"abstract":"In this paper, we present a simple method to integrate the discriminative information of video for the action recognition tasks. We introduce the concept of motion map to represent the prefix of video sequences by optimizing the recognition accuracy of original video. 3-dimensional convolution (3Dconv) based model is used to generate the new motion map by integrating current motion map and future video frame. This model is capable of increasing the length of training video in iterative manner and allow us to generate the final motion map. Experimental evaluation results on widely used datasets i.e HMDB51 and UCF101 have revealed effectiveness and flexibility of proposed method over other baseline schemes.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a simple method to integrate the discriminative information of video for the action recognition tasks. We introduce the concept of motion map to represent the prefix of video sequences by optimizing the recognition accuracy of original video. 3-dimensional convolution (3Dconv) based model is used to generate the new motion map by integrating current motion map and future video frame. This model is capable of increasing the length of training video in iterative manner and allow us to generate the final motion map. Experimental evaluation results on widely used datasets i.e HMDB51 and UCF101 have revealed effectiveness and flexibility of proposed method over other baseline schemes.
基于三维卷积的高效运动地图生成迭代模型,用于表示视频判别信息
针对动作识别任务,提出了一种简单的视频判别信息集成方法。通过优化原始视频的识别精度,引入运动地图的概念来表示视频序列的前缀。采用基于三维卷积(3Dconv)的模型,将当前运动图与未来视频帧相结合,生成新的运动图。该模型能够以迭代的方式增加训练视频的长度,并允许我们生成最终的运动图。在广泛使用的数据集HMDB51和UCF101上的实验评估结果表明,该方法比其他基准方案更有效和灵活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信