Mihaela-Codruta Ancuti, M. Svoboda, S. Musuroi, A. Hedeş, N. Olarescu, Martin Wienmann
{"title":"Boost interleaved PFC versus bridgeless boost interleaved PFC converter performance/efficiency analysis","authors":"Mihaela-Codruta Ancuti, M. Svoboda, S. Musuroi, A. Hedeş, N. Olarescu, Martin Wienmann","doi":"10.1109/ICATE.2014.6972651","DOIUrl":null,"url":null,"abstract":"In the last two decades, a great part of research in the power electronics area has been involved in finding methods of improving the input current waveform while simultaneously avoiding phase displacement. The aim of the paper consists of selecting two of the most relevant single phase power factor correction (PFC) topologies currently existing for the power range of 1.5 kW up to 4 kW and to analyse and evaluate them. The investigated topologies are the boost interleaved PFC converter and the bridgeless boost interleaved PFC converter. Performances of the two studied topologies are simulated in Matlab/Simulink. Loss analysis and efficiency evaluation are also provided. The simulation results verify that the bridgeless boost interleaved PFC converter demonstrates a slightly higher efficiency than the interleaved boost PFC converter topology.","PeriodicalId":327050,"journal":{"name":"2014 International Conference on Applied and Theoretical Electricity (ICATE)","volume":"32 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Applied and Theoretical Electricity (ICATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATE.2014.6972651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
In the last two decades, a great part of research in the power electronics area has been involved in finding methods of improving the input current waveform while simultaneously avoiding phase displacement. The aim of the paper consists of selecting two of the most relevant single phase power factor correction (PFC) topologies currently existing for the power range of 1.5 kW up to 4 kW and to analyse and evaluate them. The investigated topologies are the boost interleaved PFC converter and the bridgeless boost interleaved PFC converter. Performances of the two studied topologies are simulated in Matlab/Simulink. Loss analysis and efficiency evaluation are also provided. The simulation results verify that the bridgeless boost interleaved PFC converter demonstrates a slightly higher efficiency than the interleaved boost PFC converter topology.