Using ELM Techniques to Predict Data Centre VM Requests

Salam Ismaeel, A. Miri
{"title":"Using ELM Techniques to Predict Data Centre VM Requests","authors":"Salam Ismaeel, A. Miri","doi":"10.1109/CSCloud.2015.82","DOIUrl":null,"url":null,"abstract":"Data centre prediction models can be used to forecast future loads for a given centre in terms of CPU, memory, VM requests, and other parameters. An effective and efficient model can not only be used to optimize resource allocation, but can also be used as part of a strategy to conserve energy, improve performance and increase profits for both clients and service providers. In this paper, we have developed a prediction model, which combines k-means clustering techniques and Extreme Learning Machines (ELMs). We have shown the effectiveness of our proposed model by using it to estimate future VM requests in a data centre based on its historical usage. We have tested our model on real Google traces that feature over 25 million tasks collected over a 29-day time period. Experimental results presented show that our proposed system outperforms other models reported in the literature.","PeriodicalId":278090,"journal":{"name":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2015.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Data centre prediction models can be used to forecast future loads for a given centre in terms of CPU, memory, VM requests, and other parameters. An effective and efficient model can not only be used to optimize resource allocation, but can also be used as part of a strategy to conserve energy, improve performance and increase profits for both clients and service providers. In this paper, we have developed a prediction model, which combines k-means clustering techniques and Extreme Learning Machines (ELMs). We have shown the effectiveness of our proposed model by using it to estimate future VM requests in a data centre based on its historical usage. We have tested our model on real Google traces that feature over 25 million tasks collected over a 29-day time period. Experimental results presented show that our proposed system outperforms other models reported in the literature.
使用ELM技术预测数据中心虚拟机请求
数据中心预测模型可用于根据CPU、内存、VM请求和其他参数预测给定中心的未来负载。一个有效和高效的模型不仅可以用来优化资源配置,而且可以作为节约能源、提高绩效和增加客户和服务提供商利润的战略的一部分。在本文中,我们开发了一个结合k均值聚类技术和极限学习机(elm)的预测模型。我们已经证明了我们提出的模型的有效性,通过使用它来根据历史使用情况估计数据中心中未来的VM请求。我们已经在真实的Google跟踪上测试了我们的模型,这些跟踪包含了在29天内收集的超过2500万个任务。实验结果表明,我们提出的系统优于文献中报道的其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信