S2CE

N. Kourtellis, H. Herodotou, M. Grzenda, P. Wawrzyniak, A. Bifet
{"title":"S2CE","authors":"N. Kourtellis, H. Herodotou, M. Grzenda, P. Wawrzyniak, A. Bifet","doi":"10.1145/3465480.3466926","DOIUrl":null,"url":null,"abstract":"The explosive increase in volume, velocity, variety, and veracity of data generated by distributed and heterogeneous nodes such as IoT and other devices, continuously challenge the state of art in big data processing platforms and mining techniques. Consequently, it reveals an urgent need to address the ever-growing gap between this expected exascale data generation and the extraction of insights from these data. To address this need, this position paper proposes Stream to Cloud & Edge (S2CE), a first of its kind, optimized, multi-cloud and edge orchestrator, easily configurable, scalable, and extensible. S2CE will enable machine and deep learning over voluminous and heterogeneous data streams running on hybrid cloud and edge settings, while offering the necessary functionalities for practical and scalable processing: data fusion and preprocessing, sampling and synthetic stream generation, cloud and edge smart resource management, and distributed processing.","PeriodicalId":217173,"journal":{"name":"Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465480.3466926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The explosive increase in volume, velocity, variety, and veracity of data generated by distributed and heterogeneous nodes such as IoT and other devices, continuously challenge the state of art in big data processing platforms and mining techniques. Consequently, it reveals an urgent need to address the ever-growing gap between this expected exascale data generation and the extraction of insights from these data. To address this need, this position paper proposes Stream to Cloud & Edge (S2CE), a first of its kind, optimized, multi-cloud and edge orchestrator, easily configurable, scalable, and extensible. S2CE will enable machine and deep learning over voluminous and heterogeneous data streams running on hybrid cloud and edge settings, while offering the necessary functionalities for practical and scalable processing: data fusion and preprocessing, sampling and synthetic stream generation, cloud and edge smart resource management, and distributed processing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信