{"title":"Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials","authors":"Xiaoming An, Xian Yang","doi":"10.3934/cpaa.2022038","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper deals with the following fractional magnetic Schrödinger equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\varepsilon^{2s}(-\\Delta)^s_{A/\\varepsilon} u +V(x)u = |u|^{p-2}u, \\ x\\in{\\mathbb R}^N, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\varepsilon>0 $\\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id=\"M2\">\\begin{document}$ s\\in(0,1) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ N\\geq3 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ 2+2s/(N-2s)<p<2_s^*: = 2N/(N-2s) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">\\begin{document}$ A\\in C^{0,\\alpha}({\\mathbb R}^N,{\\mathbb R}^N) $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\alpha\\in(0,1] $\\end{document}</tex-math></inline-formula> is a magnetic field, <inline-formula><tex-math id=\"M7\">\\begin{document}$ V:{\\mathbb R}^N\\to{\\mathbb R} $\\end{document}</tex-math></inline-formula> is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of <inline-formula><tex-math id=\"M8\">\\begin{document}$ V $\\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\varepsilon\\to 0 $\\end{document}</tex-math></inline-formula>. There is no restriction on the decay rates of <inline-formula><tex-math id=\"M10\">\\begin{document}$ V $\\end{document}</tex-math></inline-formula>. Especially, <inline-formula><tex-math id=\"M11\">\\begin{document}$ V $\\end{document}</tex-math></inline-formula> can be compactly supported. The appearance of <inline-formula><tex-math id=\"M12\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula> and the nonlocal of <inline-formula><tex-math id=\"M13\">\\begin{document}$ (-\\Delta)^s $\\end{document}</tex-math></inline-formula> makes the proof more difficult than that in [<xref ref-type=\"bibr\" rid=\"b7\">7</xref>], which considered the case <inline-formula><tex-math id=\"M14\">\\begin{document}$ A\\equiv 0 $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the following fractional magnetic Schrödinger equations
\begin{document}$ \varepsilon^{2s}(-\Delta)^s_{A/\varepsilon} u +V(x)u = |u|^{p-2}u, \ x\in{\mathbb R}^N, $\end{document}
where \begin{document}$ \varepsilon>0 $\end{document} is a parameter, \begin{document}$ s\in(0,1) $\end{document}, \begin{document}$ N\geq3 $\end{document}, \begin{document}$ 2+2s/(N-2s), \begin{document}$ A\in C^{0,\alpha}({\mathbb R}^N,{\mathbb R}^N) $\end{document} with \begin{document}$ \alpha\in(0,1] $\end{document} is a magnetic field, \begin{document}$ V:{\mathbb R}^N\to{\mathbb R} $\end{document} is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of \begin{document}$ V $\end{document} as \begin{document}$ \varepsilon\to 0 $\end{document}. There is no restriction on the decay rates of \begin{document}$ V $\end{document}. Especially, \begin{document}$ V $\end{document} can be compactly supported. The appearance of \begin{document}$ A $\end{document} and the nonlocal of \begin{document}$ (-\Delta)^s $\end{document} makes the proof more difficult than that in [7], which considered the case \begin{document}$ A\equiv 0 $\end{document}.