Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials

Xiaoming An, Xian Yang
{"title":"Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials","authors":"Xiaoming An, Xian Yang","doi":"10.3934/cpaa.2022038","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper deals with the following fractional magnetic Schrödinger equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\varepsilon^{2s}(-\\Delta)^s_{A/\\varepsilon} u +V(x)u = |u|^{p-2}u, \\ x\\in{\\mathbb R}^N, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\varepsilon>0 $\\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id=\"M2\">\\begin{document}$ s\\in(0,1) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ N\\geq3 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ 2+2s/(N-2s)<p<2_s^*: = 2N/(N-2s) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">\\begin{document}$ A\\in C^{0,\\alpha}({\\mathbb R}^N,{\\mathbb R}^N) $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\alpha\\in(0,1] $\\end{document}</tex-math></inline-formula> is a magnetic field, <inline-formula><tex-math id=\"M7\">\\begin{document}$ V:{\\mathbb R}^N\\to{\\mathbb R} $\\end{document}</tex-math></inline-formula> is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of <inline-formula><tex-math id=\"M8\">\\begin{document}$ V $\\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\varepsilon\\to 0 $\\end{document}</tex-math></inline-formula>. There is no restriction on the decay rates of <inline-formula><tex-math id=\"M10\">\\begin{document}$ V $\\end{document}</tex-math></inline-formula>. Especially, <inline-formula><tex-math id=\"M11\">\\begin{document}$ V $\\end{document}</tex-math></inline-formula> can be compactly supported. The appearance of <inline-formula><tex-math id=\"M12\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula> and the nonlocal of <inline-formula><tex-math id=\"M13\">\\begin{document}$ (-\\Delta)^s $\\end{document}</tex-math></inline-formula> makes the proof more difficult than that in [<xref ref-type=\"bibr\" rid=\"b7\">7</xref>], which considered the case <inline-formula><tex-math id=\"M14\">\\begin{document}$ A\\equiv 0 $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the following fractional magnetic Schrödinger equations

where \begin{document}$ \varepsilon>0 $\end{document} is a parameter, \begin{document}$ s\in(0,1) $\end{document}, \begin{document}$ N\geq3 $\end{document}, \begin{document}$ 2+2s/(N-2s), \begin{document}$ A\in C^{0,\alpha}({\mathbb R}^N,{\mathbb R}^N) $\end{document} with \begin{document}$ \alpha\in(0,1] $\end{document} is a magnetic field, \begin{document}$ V:{\mathbb R}^N\to{\mathbb R} $\end{document} is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of \begin{document}$ V $\end{document} as \begin{document}$ \varepsilon\to 0 $\end{document}. There is no restriction on the decay rates of \begin{document}$ V $\end{document}. Especially, \begin{document}$ V $\end{document} can be compactly supported. The appearance of \begin{document}$ A $\end{document} and the nonlocal of \begin{document}$ (-\Delta)^s $\end{document} makes the proof more difficult than that in [7], which considered the case \begin{document}$ A\equiv 0 $\end{document}.

具有磁场和快速衰减电位的分数阶Schrödinger方程的半经典态
本文处理以下分数磁性Schrödinger方程\begin{document}$ \varepsilon^{2s}(-\Delta)^s_{A/\varepsilon} u +V(x)u = |u|^{p-2}u, \ x\in{\mathbb R}^N, $\end{document}是一个参数,\begin{document}$ s\in(0,1) $\end{document}, \begin{document}$ N\geq3 $\end{document}, \begin{document}$ 2+2s/(N-2s),\begin{document}$ A\in C^{0,\alpha}({\mathbb R}^N,{\mathbb R}^N) $\end{document} with \begin{document}$ \alpha\in(0,1) $\end{document}是一个磁场,\ begin{document}$ V:{\mathbb R}^N\到{\mathbb R} $\end{document}是一个非负的连续电位。通过变分方法和惩罚思想,我们证明了问题有一组解集中在\begin{document}$ V $\end{document}的局部极小值处,即\begin{document}$ \varepsilon\到0 $\end{document}。\begin{document}$ V $\end{document}的衰减率没有限制。特别地,可以紧凑地支持\begin{document}$ V $\end{document}。\begin{document}$ A $\end{document}的出现和\begin{document}$ (-\Delta)^s $\end{document}的非局部化使得证明比[7]中的证明更加困难,[7]考虑了\begin{document}$ A\equiv 0 $\end{document}的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信