Sensor drift compensation using weighted neural networks

Thiago Wiezbicki, Eduardo Parente Ribeiro
{"title":"Sensor drift compensation using weighted neural networks","authors":"Thiago Wiezbicki, Eduardo Parente Ribeiro","doi":"10.1109/EAIS.2016.7502497","DOIUrl":null,"url":null,"abstract":"In gas classification systems with multiple sensors, the individual sensor drift affects the system classification capacity over time. A model created to classify data at certain time, doesn't present the same efficiency to classify a sample in a future time. Depending on the problem, this time interval can be days, weeks or months. Chemical gas sensors suffer from drift problem because of the chemical process employed. In this investigation we developed a model that uses an ensemble of neural networks in a parallel way combining the weighted output of classifiers to compensate the drift. Another approach was to weight input data according to their recentness by repeating newer training values. Results show that performance of correct classifications of the gas samples using both methods improved when compared to classifiers trained with just recent data.","PeriodicalId":303392,"journal":{"name":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2016.7502497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In gas classification systems with multiple sensors, the individual sensor drift affects the system classification capacity over time. A model created to classify data at certain time, doesn't present the same efficiency to classify a sample in a future time. Depending on the problem, this time interval can be days, weeks or months. Chemical gas sensors suffer from drift problem because of the chemical process employed. In this investigation we developed a model that uses an ensemble of neural networks in a parallel way combining the weighted output of classifiers to compensate the drift. Another approach was to weight input data according to their recentness by repeating newer training values. Results show that performance of correct classifications of the gas samples using both methods improved when compared to classifiers trained with just recent data.
基于加权神经网络的传感器漂移补偿
在具有多个传感器的气体分类系统中,单个传感器漂移会随时间影响系统的分类能力。为某一特定时间的数据分类而创建的模型,在未来的时间对样本进行分类时并不具有相同的效率。根据问题的不同,这个时间间隔可以是几天、几周或几个月。化学气体传感器由于所采用的化学工艺而存在漂移问题。在本研究中,我们开发了一个模型,该模型以并行方式使用神经网络集合,结合分类器的加权输出来补偿漂移。另一种方法是通过重复更新的训练值,根据输入数据的近代性对其进行加权。结果表明,与仅使用最近数据训练的分类器相比,使用这两种方法对气体样本进行正确分类的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信