Efficient GPU-based skyline computation

Kenneth S. Bøgh, I. Assent, Matteo Magnani
{"title":"Efficient GPU-based skyline computation","authors":"Kenneth S. Bøgh, I. Assent, Matteo Magnani","doi":"10.1145/2485278.2485283","DOIUrl":null,"url":null,"abstract":"The skyline operator for multi-criteria search returns the most interesting points of a data set with respect to any monotone preference function. Existing work has almost exclusively focused on efficiently computing skylines on one or more CPUs, ignoring the high parallelism possible in GPUs. In this paper we investigate the challenges for efficient skyline algorithms that exploit the computational power of the GPU. We present a novel strategy for managing data transfer and memory for skylines using CPU and GPU. Our new sorting based data-parallel skyline algorithm is introduced and its properties are discussed. We demonstrate in a thorough experimental evaluation that this algorithm is faster than state-of-the-art sequential sorting based skyline algorithms and that it shows superior scalability.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485278.2485283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The skyline operator for multi-criteria search returns the most interesting points of a data set with respect to any monotone preference function. Existing work has almost exclusively focused on efficiently computing skylines on one or more CPUs, ignoring the high parallelism possible in GPUs. In this paper we investigate the challenges for efficient skyline algorithms that exploit the computational power of the GPU. We present a novel strategy for managing data transfer and memory for skylines using CPU and GPU. Our new sorting based data-parallel skyline algorithm is introduced and its properties are discussed. We demonstrate in a thorough experimental evaluation that this algorithm is faster than state-of-the-art sequential sorting based skyline algorithms and that it shows superior scalability.
高效基于gpu的天际线计算
用于多条件搜索的skyline操作符相对于任何单调偏好函数返回数据集中最有趣的点。现有的工作几乎完全专注于在一个或多个cpu上有效地计算天际线,忽略了gpu的高并行性。在本文中,我们研究了利用GPU计算能力的高效skyline算法所面临的挑战。我们提出了一种利用CPU和GPU管理天际线数据传输和内存的新策略。介绍了一种新的基于排序的数据并行天际线算法,并讨论了它的特性。我们在一个彻底的实验评估中证明,该算法比最先进的基于序列排序的天际线算法更快,并且显示出优越的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信