Mohammad Manzurul Islam, G. Karmakar, J. Kamruzzaman, Manzur Murshed, G. Kahandawa, N. Parvin
{"title":"Detecting Splicing and Copy-Move Attacks in Color Images","authors":"Mohammad Manzurul Islam, G. Karmakar, J. Kamruzzaman, Manzur Murshed, G. Kahandawa, N. Parvin","doi":"10.1109/DICTA.2018.8615874","DOIUrl":null,"url":null,"abstract":"Image sensors are generating limitless digital images every day. Image forgery like splicing and copy-move are very common type of attacks that are easy to execute using sophisticated photo editing tools. As a result, digital forensics has attracted much attention to identify such tampering on digital images. In this paper, a passive (blind) image tampering identification method based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) has been proposed. First, the chroma components of an image is divided into fixed sized non-overlapping blocks and 2D block DCT is applied to identify the changes due to forgery in local frequency distribution of the image. Then a texture descriptor, LBP is applied on the magnitude component of the 2D-DCT array to enhance the artifacts introduced by the tampering operation. The resulting LBP image is again divided into non-overlapping blocks. Finally, summations of corresponding inter-cell values of all the LBP blocks are computed and arranged as a feature vector. These features are fed into a Support Vector Machine (SVM) with Radial Basis Function (RBF) as kernel to distinguish forged images from authentic ones. The proposed method has been experimented extensively on three publicly available well-known image splicing and copy-move detection benchmark datasets of color images. Results demonstrate the superiority of the proposed method over recently proposed state-of-the-art approaches in terms of well accepted performance metrics such as accuracy, area under ROC curve and others.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Image sensors are generating limitless digital images every day. Image forgery like splicing and copy-move are very common type of attacks that are easy to execute using sophisticated photo editing tools. As a result, digital forensics has attracted much attention to identify such tampering on digital images. In this paper, a passive (blind) image tampering identification method based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) has been proposed. First, the chroma components of an image is divided into fixed sized non-overlapping blocks and 2D block DCT is applied to identify the changes due to forgery in local frequency distribution of the image. Then a texture descriptor, LBP is applied on the magnitude component of the 2D-DCT array to enhance the artifacts introduced by the tampering operation. The resulting LBP image is again divided into non-overlapping blocks. Finally, summations of corresponding inter-cell values of all the LBP blocks are computed and arranged as a feature vector. These features are fed into a Support Vector Machine (SVM) with Radial Basis Function (RBF) as kernel to distinguish forged images from authentic ones. The proposed method has been experimented extensively on three publicly available well-known image splicing and copy-move detection benchmark datasets of color images. Results demonstrate the superiority of the proposed method over recently proposed state-of-the-art approaches in terms of well accepted performance metrics such as accuracy, area under ROC curve and others.