Automatically generating and tuning GPU code for sparse matrix-vector multiplication from a high-level representation

GPGPU-4 Pub Date : 2011-03-05 DOI:10.1145/1964179.1964196
Dominik Grewe, Anton Lokhmotov
{"title":"Automatically generating and tuning GPU code for sparse matrix-vector multiplication from a high-level representation","authors":"Dominik Grewe, Anton Lokhmotov","doi":"10.1145/1964179.1964196","DOIUrl":null,"url":null,"abstract":"We propose a system-independent representation of sparse matrix formats that allows a compiler to generate efficient, system-specific code for sparse matrix operations. To show the viability of such a representation we have developed a compiler that generates and tunes code for sparse matrix-vector multiplication (SpMV) on GPUs. We evaluate our framework on six state-of-the-art matrix formats and show that the generated code performs similar to or better than hand-optimized code.","PeriodicalId":317571,"journal":{"name":"GPGPU-4","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GPGPU-4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1964179.1964196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

We propose a system-independent representation of sparse matrix formats that allows a compiler to generate efficient, system-specific code for sparse matrix operations. To show the viability of such a representation we have developed a compiler that generates and tunes code for sparse matrix-vector multiplication (SpMV) on GPUs. We evaluate our framework on six state-of-the-art matrix formats and show that the generated code performs similar to or better than hand-optimized code.
自动生成和调整GPU代码稀疏矩阵向量乘法从一个高级表示
我们提出了一种系统无关的稀疏矩阵格式表示,它允许编译器为稀疏矩阵操作生成高效的、系统特定的代码。为了证明这种表示的可行性,我们开发了一个编译器,用于在gpu上生成和调整稀疏矩阵向量乘法(SpMV)的代码。我们在六种最先进的矩阵格式上评估了我们的框架,并表明生成的代码的性能与手工优化的代码相似或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信