Error Optimization in Random Number Generation Using ABC Algorithm

Ghadir Alselwi, Tugrul Tasci
{"title":"Error Optimization in Random Number Generation Using ABC Algorithm","authors":"Ghadir Alselwi, Tugrul Tasci","doi":"10.1109/MTICTI53925.2021.9664773","DOIUrl":null,"url":null,"abstract":"Optimization is an effort to find the best option in the settings of the objective function. The goal of this study is to optimize multivariable functions using Artificial Bee Colony (ABC) which is one of the most current swarm intelligence-based algorithms, simulating the foraging activity of honeybees. The performance of the ABC algorithm has been measured on the minimization process of 22 benchmark functions including the popular Griewank, Rastrigin, Sphere, and Rosenbrock. The experimental results demonstrate that the ABC algorithm has approximated the actual value with an accuracy percentage of 98.85.","PeriodicalId":218225,"journal":{"name":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)","volume":"3 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTICTI53925.2021.9664773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimization is an effort to find the best option in the settings of the objective function. The goal of this study is to optimize multivariable functions using Artificial Bee Colony (ABC) which is one of the most current swarm intelligence-based algorithms, simulating the foraging activity of honeybees. The performance of the ABC algorithm has been measured on the minimization process of 22 benchmark functions including the popular Griewank, Rastrigin, Sphere, and Rosenbrock. The experimental results demonstrate that the ABC algorithm has approximated the actual value with an accuracy percentage of 98.85.
基于ABC算法的随机数生成误差优化
优化是在目标函数的设置中找到最佳选项的努力。本研究的目的是利用人工蜂群(Artificial Bee Colony, ABC)算法对多变量函数进行优化,模拟蜜蜂的觅食活动。ABC算法的性能已经在22个基准函数的最小化过程中进行了测量,包括流行的Griewank, Rastrigin, Sphere和Rosenbrock。实验结果表明,ABC算法与实际值较为接近,准确率为98.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信