On analyzing video with very small motions

M. Dixon, Austin Abrams, Nathan Jacobs, Robert Pless
{"title":"On analyzing video with very small motions","authors":"M. Dixon, Austin Abrams, Nathan Jacobs, Robert Pless","doi":"10.1109/CVPR.2011.5995703","DOIUrl":null,"url":null,"abstract":"We characterize a class of videos consisting of very small but potentially complicated motions. We find that in these scenes, linear appearance variations have a direct relationship to scene motions. We show how to interpret appearance variations captured through a PCA decomposition of the image set as a scene-specific non-parametric motion basis. We propose fast, robust tools for dense flow estimates that are effective in scenes with small motions and potentially large image noise. We show example results in a variety of applications, including motion segmentation and long-term point tracking.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"50 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We characterize a class of videos consisting of very small but potentially complicated motions. We find that in these scenes, linear appearance variations have a direct relationship to scene motions. We show how to interpret appearance variations captured through a PCA decomposition of the image set as a scene-specific non-parametric motion basis. We propose fast, robust tools for dense flow estimates that are effective in scenes with small motions and potentially large image noise. We show example results in a variety of applications, including motion segmentation and long-term point tracking.
用非常小的动作分析视频
我们描述了一类由非常小但潜在复杂的动作组成的视频。我们发现,在这些场景中,线性外观变化与场景运动有直接关系。我们展示了如何通过图像集的PCA分解作为场景特定的非参数运动基础来解释捕获的外观变化。我们提出了快速、健壮的密集流估计工具,这些工具在具有小运动和潜在大图像噪声的场景中有效。我们展示了各种应用的示例结果,包括运动分割和长期点跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信