Gaussian Versus Cauchy Membership Functions in Fuzzy PSO

A. M. Abdelbar, S. Abdelshahid, D. Wunsch
{"title":"Gaussian Versus Cauchy Membership Functions in Fuzzy PSO","authors":"A. M. Abdelbar, S. Abdelshahid, D. Wunsch","doi":"10.1109/IJCNN.2007.4371421","DOIUrl":null,"url":null,"abstract":"In standard particle swarm optimization (PSO), the best particle in each neighborhood exerts its influence over other particles in the neighborhood. Fuzzy PSO is a generalization which differs from standard PSO in the following respect: charisma (influence over others) is defined to be a fuzzy variable, and more than one particle in each neighborhood can have a non-zero degree of charisma, and, consequently, is allowed to influence others to a degree that depends on its charisma. In this paper, we compare between the use of the Gaussian and Cauchy membership functions (MF) as the MF of the charisma fuzzy variable. We evaluate the performance of the two MFs using the weighted max-sat problem.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In standard particle swarm optimization (PSO), the best particle in each neighborhood exerts its influence over other particles in the neighborhood. Fuzzy PSO is a generalization which differs from standard PSO in the following respect: charisma (influence over others) is defined to be a fuzzy variable, and more than one particle in each neighborhood can have a non-zero degree of charisma, and, consequently, is allowed to influence others to a degree that depends on its charisma. In this paper, we compare between the use of the Gaussian and Cauchy membership functions (MF) as the MF of the charisma fuzzy variable. We evaluate the performance of the two MFs using the weighted max-sat problem.
模糊粒子群中的高斯与柯西隶属函数
在标准粒子群优化(PSO)中,每个邻域中的最佳粒子对邻域中的其他粒子施加影响。模糊粒子群是一种与标准粒子群不同的泛化:将魅力(对他人的影响力)定义为一个模糊变量,并且每个邻域中可以有多个粒子具有非零的魅力度,因此,允许对他人的影响程度取决于其魅力。本文比较了高斯隶属函数和柯西隶属函数(MF)作为卡西拉模糊变量的MF的应用。我们使用加权max-sat问题来评估这两个mf的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信