Identification of Anesthesia Stages from EEG Signals using Wavelet Entropy and Backpropagation Neural Network

A. Rasel
{"title":"Identification of Anesthesia Stages from EEG Signals using Wavelet Entropy and Backpropagation Neural Network","authors":"A. Rasel","doi":"10.34257/GJCSTDVOL19IS1PG17","DOIUrl":null,"url":null,"abstract":"This study focuses on entropy based analysis of EEG signals for extracting features for a neural network based solution for identifying anesthetic levels. The process involves an optimized back propagation neural network with a supervised learning method. We provided the extracted features from EEG signals as training data for the neural network. The target outputs provided are levels of anesthesia stages. Wavelet analysis provides more effective extraction of key features from EEG data than power spectral density analysis using Fourier transform. The key features are used to train the Back Propagation Neural Network (BPNN) for pattern classification network. The final result shows that entropy-based feature extraction is an effective procedure for classifying EEG data.","PeriodicalId":340110,"journal":{"name":"Global journal of computer science and technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/GJCSTDVOL19IS1PG17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study focuses on entropy based analysis of EEG signals for extracting features for a neural network based solution for identifying anesthetic levels. The process involves an optimized back propagation neural network with a supervised learning method. We provided the extracted features from EEG signals as training data for the neural network. The target outputs provided are levels of anesthesia stages. Wavelet analysis provides more effective extraction of key features from EEG data than power spectral density analysis using Fourier transform. The key features are used to train the Back Propagation Neural Network (BPNN) for pattern classification network. The final result shows that entropy-based feature extraction is an effective procedure for classifying EEG data.
基于小波熵和反向传播神经网络的脑电信号麻醉阶段识别
本研究的重点是基于熵的脑电图信号分析,为基于神经网络的麻醉水平识别解决方案提取特征。该过程涉及一个优化的反向传播神经网络与监督学习方法。我们将提取的脑电信号特征作为神经网络的训练数据。提供的目标输出是麻醉阶段的水平。与傅立叶变换的功率谱密度分析相比,小波分析能更有效地提取脑电数据的关键特征。利用这些关键特征来训练用于模式分类网络的反向传播神经网络(BPNN)。结果表明,基于熵的特征提取是一种有效的脑电信号分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信