{"title":"Covid-19 Diagnosis by Gray-level Cooccurrence Matrix and Genetic Algorithm","authors":"Xiaoyan Jiang, Mackenzie Brown, Zuojin Hu, Hei-Ran Cheong","doi":"10.4108/eetel.v8i1.2344","DOIUrl":null,"url":null,"abstract":"Currently, improving the identification of COVID-19 with the help of computer vision and artificial intelligence has received great attention from researchers. This paper proposes a novel method for automatic detection of COVID-19 based on chest CT to help radiologists improve the speed and reliability of tests for diagnosing COVID-19. Our algorithm is a hybrid approach based on the Gray-level Cooccurrence Matrix and Genetic Algorithm. The Gray-level Cooccurrence Matrix (GLCM) was used to extract CT scan image features, GA algorithm was used as an optimizer, and a feedforward neural network was used as a classifier. Finally, we use 296 chest CT scan images to evaluate the detection performance of our proposed method. To more accurately evaluate the accuracy of the algorithm, 10-run 10-fold cross-validation was introduced. Experimental results show that our proposed method outperforms state-of-the-art methods in terms of Sensitivity, Accuracy, F1, MCC, and FMI.","PeriodicalId":298151,"journal":{"name":"EAI Endorsed Trans. e Learn.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. e Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetel.v8i1.2344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, improving the identification of COVID-19 with the help of computer vision and artificial intelligence has received great attention from researchers. This paper proposes a novel method for automatic detection of COVID-19 based on chest CT to help radiologists improve the speed and reliability of tests for diagnosing COVID-19. Our algorithm is a hybrid approach based on the Gray-level Cooccurrence Matrix and Genetic Algorithm. The Gray-level Cooccurrence Matrix (GLCM) was used to extract CT scan image features, GA algorithm was used as an optimizer, and a feedforward neural network was used as a classifier. Finally, we use 296 chest CT scan images to evaluate the detection performance of our proposed method. To more accurately evaluate the accuracy of the algorithm, 10-run 10-fold cross-validation was introduced. Experimental results show that our proposed method outperforms state-of-the-art methods in terms of Sensitivity, Accuracy, F1, MCC, and FMI.