Clément Dorffer, M. Puigt, G. Delmaire, G. Roussel
{"title":"Nonlinear mobile sensor calibration using informed semi-nonnegative matrix factorization with a Vandermonde factor","authors":"Clément Dorffer, M. Puigt, G. Delmaire, G. Roussel","doi":"10.1109/SAM.2016.7569735","DOIUrl":null,"url":null,"abstract":"In this paper we aim to blindly calibrate a mobile sensor network whose sensor outputs and the sensed phenomenon are linked by a polynomial relationship. The proposed approach is based on a novel informed semi-nonnegative matrix factorization with a Vandermonde factor matrix. The proposed approach outperforms a matrix-completion-based method in a crowdsensing-like simulation of particulate matter sensing.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In this paper we aim to blindly calibrate a mobile sensor network whose sensor outputs and the sensed phenomenon are linked by a polynomial relationship. The proposed approach is based on a novel informed semi-nonnegative matrix factorization with a Vandermonde factor matrix. The proposed approach outperforms a matrix-completion-based method in a crowdsensing-like simulation of particulate matter sensing.