Meta Network for Radar HRRP Noncooperative Target Recognition with Missing Aspects

Long Tian, Bo Chen, Yang Peng, Chuan Du, Zhenhua Wu, Hongwei Liu
{"title":"Meta Network for Radar HRRP Noncooperative Target Recognition with Missing Aspects","authors":"Long Tian, Bo Chen, Yang Peng, Chuan Du, Zhenhua Wu, Hongwei Liu","doi":"10.1109/IGARSS39084.2020.9323129","DOIUrl":null,"url":null,"abstract":"We propose a meta network (MNet) for the problem of target-aspect missing in radar high-resolution range profile (HRRP)-based noncooperative target recognition, where a classifier must be generalized to new aspects not seen in the training set, given only a small number of HRRP data of each new aspect. The MNet is a time domain convolutional neural network (TCNN) that is built based upon recent progress in meta-learning. In effect, it learns a model that is easy and fast to fine-tune, allowing the adaptation to happen in the right space for fast learning. Besides, we construct a new controllable HRRP dataset suitable for the scenario of noncooperative target-aspect missing using electromagnetic simulation. Compared with the traditional methods, the MNet is more efficient and could achieve better performance. Extensive experiments on the simulated HRRP dataset are conducted to illustrate the effectiveness of the proposed method.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a meta network (MNet) for the problem of target-aspect missing in radar high-resolution range profile (HRRP)-based noncooperative target recognition, where a classifier must be generalized to new aspects not seen in the training set, given only a small number of HRRP data of each new aspect. The MNet is a time domain convolutional neural network (TCNN) that is built based upon recent progress in meta-learning. In effect, it learns a model that is easy and fast to fine-tune, allowing the adaptation to happen in the right space for fast learning. Besides, we construct a new controllable HRRP dataset suitable for the scenario of noncooperative target-aspect missing using electromagnetic simulation. Compared with the traditional methods, the MNet is more efficient and could achieve better performance. Extensive experiments on the simulated HRRP dataset are conducted to illustrate the effectiveness of the proposed method.
缺失面雷达HRRP非合作目标识别的元网络
针对基于雷达高分辨率距离像(HRRP)的非合作目标识别中目标面缺失问题,提出了一种元网络(MNet),其中分类器必须推广到训练集中未出现的新方面,每个新方面只有少量的HRRP数据。MNet是一种基于元学习最新进展而建立的时域卷积神经网络(TCNN)。实际上,它学习了一个容易快速微调的模型,允许适应发生在快速学习的正确空间。此外,我们还利用电磁仿真构建了一个适用于非合作目标面缺失场景的可控HRRP数据集。与传统方法相比,MNet具有更高的效率和更好的性能。在模拟HRRP数据集上进行了大量实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信