Simulation process support for climate data analysis

Yunhee Kang, S. Kung, Haengjin Jang
{"title":"Simulation process support for climate data analysis","authors":"Yunhee Kang, S. Kung, Haengjin Jang","doi":"10.1145/2494621.2494651","DOIUrl":null,"url":null,"abstract":"According to data volumes in scientific applications have grown exponentially, new scientific methods to analyze and organize the data are required. Especially these methods need to support effective infrastructure composed of computing resources that are used for pre-processing and post-processing of scientific data. In this paper, we describe the design of a framework to support data transformation and reduction, in which is an essential phase to handling a large scale of data in a climate simulation. In order for efficient data movement in the designed framework we use the pushpull framework provided by Apache OODT.","PeriodicalId":190559,"journal":{"name":"ACM Cloud and Autonomic Computing Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Cloud and Autonomic Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2494621.2494651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

According to data volumes in scientific applications have grown exponentially, new scientific methods to analyze and organize the data are required. Especially these methods need to support effective infrastructure composed of computing resources that are used for pre-processing and post-processing of scientific data. In this paper, we describe the design of a framework to support data transformation and reduction, in which is an essential phase to handling a large scale of data in a climate simulation. In order for efficient data movement in the designed framework we use the pushpull framework provided by Apache OODT.
模拟过程支持气候数据分析
随着科学应用中的数据量呈指数级增长,需要新的科学方法来分析和组织数据。这些方法尤其需要支持由计算资源组成的有效基础设施,用于科学数据的预处理和后处理。在本文中,我们描述了一个框架的设计,以支持数据转换和简化,这是在气候模拟中处理大规模数据的必要阶段。为了在设计的框架中实现高效的数据移动,我们使用了Apache OODT提供的推拉框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信