Predicting Users’ Search Behavior Using Stochastic Multi-mode Network Models

Shohei Umehara, K. Eguchi
{"title":"Predicting Users’ Search Behavior Using Stochastic Multi-mode Network Models","authors":"Shohei Umehara, K. Eguchi","doi":"10.1109/ICDMW.2017.25","DOIUrl":null,"url":null,"abstract":"Multidimensional relationships can be represented as a multi-mode network or graph, where each vertex or node corresponds to an object, and each edge or link is attributed to one of the multiple types of relationships between a pair of objects. Web search log includes users' search behavior and can also be represented as such a multi-mode network, where each vertex corresponds to a query and each attributed edge corresponds to a relationship between a pair of queries. The relational attributes can be derived from multiple assumptions, for instance, two queries are considered to be related to each other when two different users input those queries and click through from respective search result lists to the sameWeb pages. In order to analyze such complex data, this paper proposes a new multi-mode block model based on latent variable modeling. We evaluate the effectiveness of our multi-mode block model through experiments on the task of predicting queries related to each given query using real search query log.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multidimensional relationships can be represented as a multi-mode network or graph, where each vertex or node corresponds to an object, and each edge or link is attributed to one of the multiple types of relationships between a pair of objects. Web search log includes users' search behavior and can also be represented as such a multi-mode network, where each vertex corresponds to a query and each attributed edge corresponds to a relationship between a pair of queries. The relational attributes can be derived from multiple assumptions, for instance, two queries are considered to be related to each other when two different users input those queries and click through from respective search result lists to the sameWeb pages. In order to analyze such complex data, this paper proposes a new multi-mode block model based on latent variable modeling. We evaluate the effectiveness of our multi-mode block model through experiments on the task of predicting queries related to each given query using real search query log.
基于随机多模网络模型的用户搜索行为预测
多维关系可以表示为多模式网络或图,其中每个顶点或节点对应一个对象,每个边或链接都归属于一对对象之间的多种类型关系中的一种。Web搜索日志包括用户的搜索行为,也可以表示为这样一个多模式网络,其中每个顶点对应一个查询,每个属性边对应一对查询之间的关系。关系属性可以从多个假设中得到,例如,当两个不同的用户输入两个查询并从各自的搜索结果列表单击到相同的web页面时,两个查询被认为是相互关联的。为了分析这类复杂数据,本文提出了一种基于潜变量建模的多模块模型。我们通过使用真实的搜索查询日志预测与每个给定查询相关的查询任务的实验来评估我们的多模式块模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信