The Uniform Validity of Impulse Response Inference in Autoregressions

PSN: Econometrics Pub Date : 2019-01-27 DOI:10.24149/wp1908
A. Inoue, L. Kilian
{"title":"The Uniform Validity of Impulse Response Inference in Autoregressions","authors":"A. Inoue, L. Kilian","doi":"10.24149/wp1908","DOIUrl":null,"url":null,"abstract":"Existing proofs of the asymptotic validity of conventional methods of impulse response inference based on higher-order autoregressions are pointwise only. In this paper, we establish the uniform asymptotic validity of conventional asymptotic and bootstrap inference about individual impulse responses and vectors of impulse responses when the horizon is fixed with respect to the sample size. For inference about vectors of impulse responses based on Wald test statistics to be uniformly valid, lag-augmented autoregressions are required, whereas inference about individual impulse responses is uniformly valid under weak conditions even without lag augmentation. We introduce a new rank condition that ensures the uniform validity of inference on impulse responses and show that this condition holds under weak conditions. Simulations show that the highest finite-sample accuracy is achieved when bootstrapping the lag-augmented autoregression using the bias adjustments of Kilian (1999). The conventional bootstrap percentile interval for impulse responses based on this approach remains accurate even at long horizons. We provide a formal asymptotic justification for this result.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24149/wp1908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Existing proofs of the asymptotic validity of conventional methods of impulse response inference based on higher-order autoregressions are pointwise only. In this paper, we establish the uniform asymptotic validity of conventional asymptotic and bootstrap inference about individual impulse responses and vectors of impulse responses when the horizon is fixed with respect to the sample size. For inference about vectors of impulse responses based on Wald test statistics to be uniformly valid, lag-augmented autoregressions are required, whereas inference about individual impulse responses is uniformly valid under weak conditions even without lag augmentation. We introduce a new rank condition that ensures the uniform validity of inference on impulse responses and show that this condition holds under weak conditions. Simulations show that the highest finite-sample accuracy is achieved when bootstrapping the lag-augmented autoregression using the bias adjustments of Kilian (1999). The conventional bootstrap percentile interval for impulse responses based on this approach remains accurate even at long horizons. We provide a formal asymptotic justification for this result.
自回归中脉冲响应推理的一致有效性
现有的基于高阶自回归的传统脉冲响应推理方法的渐近有效性证明仅是点态的。本文建立了当视界相对于样本量固定时,关于单个脉冲响应和脉冲响应向量的常规渐近和自举推理的一致渐近有效性。为了使基于Wald检验统计量的脉冲响应向量的推断一致有效,需要滞后增广的自回归,而在弱条件下,即使没有滞后增广,关于单个脉冲响应的推断也是一致有效的。我们引入了一个新的秩条件来保证脉冲响应推理的一致有效性,并证明了这个条件在弱条件下成立。模拟表明,当使用Kilian(1999)的偏差调整自启动滞后增强自回归时,达到了最高的有限样本精度。基于这种方法的脉冲响应的传统自举百分位数间隔即使在很长的视界上也是准确的。我们为这个结果提供了一个正式的渐近证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信