A gene complementary genetic algorithm for unit commitment

Liu Maojun, Tong Tiaosheng
{"title":"A gene complementary genetic algorithm for unit commitment","authors":"Liu Maojun, Tong Tiaosheng","doi":"10.1109/ICEMS.2001.970758","DOIUrl":null,"url":null,"abstract":"This paper presents a modified genetic algorithm solution to the unit commitment problem (UCP), and constructs three kinds of genetic operators. To enhance convergence rate of the algorithm and prevent converging at a local optimal solution, a gene complementary technology is proposed and is applied to the modified genetic algorithm, which is called a gene complementary genetic algorithm (GCGA). Simulation results show that GCGA is a very efficient algorithm for solution to UCP.","PeriodicalId":143007,"journal":{"name":"ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMS.2001.970758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a modified genetic algorithm solution to the unit commitment problem (UCP), and constructs three kinds of genetic operators. To enhance convergence rate of the algorithm and prevent converging at a local optimal solution, a gene complementary technology is proposed and is applied to the modified genetic algorithm, which is called a gene complementary genetic algorithm (GCGA). Simulation results show that GCGA is a very efficient algorithm for solution to UCP.
单位承诺的基因互补遗传算法
提出了一种改进的遗传算法求解机组承诺问题,并构造了三种遗传算子。为了提高算法的收敛速度,防止算法收敛于局部最优解,提出了一种基因互补技术,并将其应用于改进的遗传算法中,称为基因互补遗传算法(GCGA)。仿真结果表明,GCGA是一种求解UCP问题的有效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信