Measurement classification using hybrid weighted Naive Bayes

David Hamblin, Dali Wang, Gao Chen
{"title":"Measurement classification using hybrid weighted Naive Bayes","authors":"David Hamblin, Dali Wang, Gao Chen","doi":"10.1109/CIVEMSA.2016.7524248","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for classifying measurement variables within airborne measurement data files collected by NASA. The proposed solution utilizes a combination of decision tree and Naive Bayes classifiers. In order to mitigate the independence assumption of Naive Bayes, we apply a weight vector to the feature set based on each feature's role in the classification process. The Analytic Hierarchy Process is selected to calculate the weight vector, after an investigation of various weight calculation techniques. The assessment of the algorithm with recent NASA data shows that the algorithm delivers robust results, and exceeds the performance expectation in the presence of inconsistencies and inaccuracies among measurement data.","PeriodicalId":244122,"journal":{"name":"2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"7 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2016.7524248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an algorithm for classifying measurement variables within airborne measurement data files collected by NASA. The proposed solution utilizes a combination of decision tree and Naive Bayes classifiers. In order to mitigate the independence assumption of Naive Bayes, we apply a weight vector to the feature set based on each feature's role in the classification process. The Analytic Hierarchy Process is selected to calculate the weight vector, after an investigation of various weight calculation techniques. The assessment of the algorithm with recent NASA data shows that the algorithm delivers robust results, and exceeds the performance expectation in the presence of inconsistencies and inaccuracies among measurement data.
基于混合加权朴素贝叶斯的测量分类
提出了一种NASA机载测量数据文件中测量变量的分类算法。提出的解决方案利用决策树和朴素贝叶斯分类器的组合。为了减轻朴素贝叶斯的独立性假设,我们根据每个特征在分类过程中的作用对特征集应用权重向量。在研究了各种权重计算方法后,选择层次分析法来计算权重向量。用NASA最近的数据对该算法进行的评估表明,该算法提供了稳健的结果,并且在测量数据不一致和不准确的情况下超出了预期的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信