Dae Wook Kim, Marcos A. Esparza, H. Quach, S. Rodriguez, Hyukmo Kang, Yi-Ting Feng, Heejoo Choi
{"title":"Optical technology for future telescopes","authors":"Dae Wook Kim, Marcos A. Esparza, H. Quach, S. Rodriguez, Hyukmo Kang, Yi-Ting Feng, Heejoo Choi","doi":"10.1117/12.2586867","DOIUrl":null,"url":null,"abstract":"Various ground-based and space-based future telescope technologies are currently being conceptualized, designed, prototyped and tested to perform next generation astronomical sciences. They include (1) the alignment of segmented multi-order diffractive elements for the Nautilus space observatory; (2) the inflatable terahertz OASIS space telescope primary mirror characterization metrology; (3) active alignment of the laser truss-based Large Binocular Telescope prime focus camera; (4) the modular cross-dispersion spectroscopy unit, MOBIUS, used at the prime focal plane of the Large Binocular Telescope; (5) pupil segmentation topological optimization for future high contrast imaging telescopes; and (6) the optical design of the long slit UV spectroscopy space telescope Hyperion. This suite of enabling optical technologies and concept designs will redefine how humans understand the genesis and future of our universe.","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Various ground-based and space-based future telescope technologies are currently being conceptualized, designed, prototyped and tested to perform next generation astronomical sciences. They include (1) the alignment of segmented multi-order diffractive elements for the Nautilus space observatory; (2) the inflatable terahertz OASIS space telescope primary mirror characterization metrology; (3) active alignment of the laser truss-based Large Binocular Telescope prime focus camera; (4) the modular cross-dispersion spectroscopy unit, MOBIUS, used at the prime focal plane of the Large Binocular Telescope; (5) pupil segmentation topological optimization for future high contrast imaging telescopes; and (6) the optical design of the long slit UV spectroscopy space telescope Hyperion. This suite of enabling optical technologies and concept designs will redefine how humans understand the genesis and future of our universe.