A topic model analysis of science and technology linkages: A case study in pharmaceutical industry

Samira Ranaei, A. Suominen, O. Dedehayir
{"title":"A topic model analysis of science and technology linkages: A case study in pharmaceutical industry","authors":"Samira Ranaei, A. Suominen, O. Dedehayir","doi":"10.1109/TEMSCON.2017.7998353","DOIUrl":null,"url":null,"abstract":"Science and technology (S&T) linkages have been studied extensively using patent and scientific publication databases. Existing methods used to track S&T linkages, such as analysis of non-patent literature (NPL) or author-inventor matching offer a narrow window for industry level analysis of the data. This paper examines the application of a machine learning algorithm, namely Latent Dirichlet Allocation, to detect the semantic relationship between patent and scientific publication corpus. The case of “Taxol”, a cancer drug, is used to illustrate the performance of the unsupervised algorithm in clustering documents with similar topics. In total 26 475 documents retrieved from the Europe PMC database was used a sample for the analysis. Qualitative analysis of the clusters shows that the topic clustering algorithm is valuable approach in detection of patent and publication linkage.","PeriodicalId":193013,"journal":{"name":"2017 IEEE Technology & Engineering Management Conference (TEMSCON)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Technology & Engineering Management Conference (TEMSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEMSCON.2017.7998353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Science and technology (S&T) linkages have been studied extensively using patent and scientific publication databases. Existing methods used to track S&T linkages, such as analysis of non-patent literature (NPL) or author-inventor matching offer a narrow window for industry level analysis of the data. This paper examines the application of a machine learning algorithm, namely Latent Dirichlet Allocation, to detect the semantic relationship between patent and scientific publication corpus. The case of “Taxol”, a cancer drug, is used to illustrate the performance of the unsupervised algorithm in clustering documents with similar topics. In total 26 475 documents retrieved from the Europe PMC database was used a sample for the analysis. Qualitative analysis of the clusters shows that the topic clustering algorithm is valuable approach in detection of patent and publication linkage.
科技联系的主题模型分析:以医药行业为例
利用专利和科学出版物数据库对科技联系进行了广泛的研究。现有的跟踪科技联系的方法,如非专利文献分析或作者-发明者匹配,为行业层面的数据分析提供了一个狭窄的窗口。本文研究了一种机器学习算法的应用,即潜狄利克雷分配,以检测专利和科学出版物语料库之间的语义关系。以抗癌药物“紫杉醇”为例,说明了无监督算法在具有相似主题的聚类文档中的性能。从欧洲PMC数据库中检索的总共26 475份文件被用作分析样本。对聚类的定性分析表明,主题聚类算法是一种有价值的专利与出版物联动检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信