A Visualization Tool for Learning Statistical Analysis in Multi Tabular Datasets

K. Vaishnavi, Ashwin Kannan, David Cline, Ronak Etemadpour
{"title":"A Visualization Tool for Learning Statistical Analysis in Multi Tabular Datasets","authors":"K. Vaishnavi, Ashwin Kannan, David Cline, Ronak Etemadpour","doi":"10.1109/ICALT.2016.13","DOIUrl":null,"url":null,"abstract":"The ability of the human mind to perceive visual informationmakes visualization not only useful, but a powerful toolfor information discovery. Answering questions about complexrelationships requires the analyst to choose a statistical analysistechnique that makes relationships visually discernible. Oftenthe proper technique is dependent on the characteristics of thedataset, such as dependency among variables, sample size, andtypes of data (ordinal or categorical). In this work, we proposea web based interface approach that visualizes various statisticaltests and displays the distributions of data using color codingschemes. With our system, a user can select multiple variablesinteractively, and the resulting selections will be visualized tohelp the user understand the data and statistical formulas used toshow it. This capability allows a user to quickly evaluate differentsubsets of a large, complex dataset for statistical correlations. Tovalidate our approach, we performed a controlled user study toevaluate the ease of use of our system, and to test the effectivenessof our interface. We see our system as directly applicable to dataanalytical tasks, as well as a useful teaching tool for those learningdata analytics.","PeriodicalId":188900,"journal":{"name":"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The ability of the human mind to perceive visual informationmakes visualization not only useful, but a powerful toolfor information discovery. Answering questions about complexrelationships requires the analyst to choose a statistical analysistechnique that makes relationships visually discernible. Oftenthe proper technique is dependent on the characteristics of thedataset, such as dependency among variables, sample size, andtypes of data (ordinal or categorical). In this work, we proposea web based interface approach that visualizes various statisticaltests and displays the distributions of data using color codingschemes. With our system, a user can select multiple variablesinteractively, and the resulting selections will be visualized tohelp the user understand the data and statistical formulas used toshow it. This capability allows a user to quickly evaluate differentsubsets of a large, complex dataset for statistical correlations. Tovalidate our approach, we performed a controlled user study toevaluate the ease of use of our system, and to test the effectivenessof our interface. We see our system as directly applicable to dataanalytical tasks, as well as a useful teaching tool for those learningdata analytics.
用于学习多表格数据集统计分析的可视化工具
人类大脑感知视觉信息的能力使可视化不仅有用,而且是信息发现的强大工具。回答有关复杂关系的问题需要分析人员选择一种统计分析技术,使关系在视觉上清晰可辨。通常,适当的技术取决于数据集的特征,例如变量之间的依赖性,样本量和数据类型(有序或分类)。在这项工作中,我们提出了一种基于web的界面方法,该方法可以可视化各种统计测试,并使用颜色编码方案显示数据的分布。在我们的系统中,用户可以交互式地选择多个变量,结果选择将被可视化,以帮助用户理解用于显示它的数据和统计公式。该功能允许用户快速评估大型复杂数据集的不同子集,以获得统计相关性。为了验证我们的方法,我们进行了一项受控用户研究,以评估我们系统的易用性,并测试我们界面的有效性。我们认为我们的系统可以直接应用于数据分析任务,同时也是学习数据分析的有用教学工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信