A Dynamic Multi-criteria Multi-engine Approach for Text Simplification

Victor Henrique Alves Ribeiro, P. Cavalin, E. Morais
{"title":"A Dynamic Multi-criteria Multi-engine Approach for Text Simplification","authors":"Victor Henrique Alves Ribeiro, P. Cavalin, E. Morais","doi":"10.1109/IJCNN52387.2021.9533365","DOIUrl":null,"url":null,"abstract":"In this work we present a multi-criteria multi-engine approach for text simplification. The main goal is to demonstrate a way to take advantage of a pool of systems, since in the literature several systems have been proposed for the task, and the results have been improving considerably. Note though, that such systems can behave differently, better or worse than the other ones, according to the input. For this reason, in this work we investigate the benefits of exploiting multiple systems at once, in a single-engine, in order to select the most appropriate simplification output from a pool of candidate outputs. In such an engine, a multi-critera decision making approach selects the final output considering simplicity and similarity scores, by comparing the candidates with the input. Results on both the Turk and WikiSmall corpora indicate that the proposed framework is able to balance the trade-off between bilingual evaluation understudy (BLEU), system output against references and against the input sentence (SARI), and Flesch reading ease scores for existing state-of-the art models.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9533365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we present a multi-criteria multi-engine approach for text simplification. The main goal is to demonstrate a way to take advantage of a pool of systems, since in the literature several systems have been proposed for the task, and the results have been improving considerably. Note though, that such systems can behave differently, better or worse than the other ones, according to the input. For this reason, in this work we investigate the benefits of exploiting multiple systems at once, in a single-engine, in order to select the most appropriate simplification output from a pool of candidate outputs. In such an engine, a multi-critera decision making approach selects the final output considering simplicity and similarity scores, by comparing the candidates with the input. Results on both the Turk and WikiSmall corpora indicate that the proposed framework is able to balance the trade-off between bilingual evaluation understudy (BLEU), system output against references and against the input sentence (SARI), and Flesch reading ease scores for existing state-of-the art models.
一种动态多准则多引擎文本简化方法
在这项工作中,我们提出了一种多标准多引擎的文本简化方法。主要目标是演示一种利用系统池的方法,因为在文献中已经为该任务提出了几个系统,并且结果已经得到了相当大的改进。但请注意,根据输入,这样的系统可以表现得不同,比其他系统更好或更差。出于这个原因,在这项工作中,我们研究了在单个引擎中同时利用多个系统的好处,以便从候选输出池中选择最合适的简化输出。在该引擎中,通过将候选结果与输入进行比较,采用多准则决策方法选择考虑简单性和相似度得分的最终输出。在土耳其语和WikiSmall语料库上的结果表明,所提出的框架能够平衡双语评估替代研究(BLEU)、系统输出与参考文献和输入句子(SARI)之间的权衡,以及现有最先进模型的Flesch阅读轻松分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信