Detecting Prostate Cancer Using A CNN-Based System Without Segmentation

Islam Reda, M. Ghazal, A. Shalaby, Mohammed M Elmogy, A. Aboulfotouh, M. El-Ghar, Adel Said Elmaghraby, R. Keynton, A. El-Baz
{"title":"Detecting Prostate Cancer Using A CNN-Based System Without Segmentation","authors":"Islam Reda, M. Ghazal, A. Shalaby, Mohammed M Elmogy, A. Aboulfotouh, M. El-Ghar, Adel Said Elmaghraby, R. Keynton, A. El-Baz","doi":"10.1109/ISBI.2019.8759102","DOIUrl":null,"url":null,"abstract":"A computer-aided diagnosis (CAD) system for early detection of prostate cancer from diffusion-weighted magnetic resonance imaging (DWI) is proposed in this paper. The proposed system starts by defining a region of interest that includes the prostate across the different slices of the input DWI volume. Then, the apparent diffusion coefficient (ADC) of the defined ROI is calculated, normalized and refined. Finally, the classification of prostate into either benign or malignant is achieved using a classification system of two stages. In the first stage, seven convolutional neural networks (CNNs) are used to determine initial classification probabilities for each case. Then, an SVM with Guassian kernel is fed with these probabilities to determine the ultimate diagnosis. The proposed system is new in the sense that it has the ability to detect prostate cancer with minimal prior processing (e.g., rough definition of the prostate region). Evaluation of the developed system is done using DWI datasets collected at seven different b -values from 40 patients (20 benign and 20 malignant). The acquisition of these DWI datasets is performed using two different scanners with different magnetic field strengths (1.5 Tesla and 3 Tesla). The resulting area under curve (AUC) after the second stage of classification is 0.99, which shows a high performance of our system without segmentation similar to the performance of up-to-date systems.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A computer-aided diagnosis (CAD) system for early detection of prostate cancer from diffusion-weighted magnetic resonance imaging (DWI) is proposed in this paper. The proposed system starts by defining a region of interest that includes the prostate across the different slices of the input DWI volume. Then, the apparent diffusion coefficient (ADC) of the defined ROI is calculated, normalized and refined. Finally, the classification of prostate into either benign or malignant is achieved using a classification system of two stages. In the first stage, seven convolutional neural networks (CNNs) are used to determine initial classification probabilities for each case. Then, an SVM with Guassian kernel is fed with these probabilities to determine the ultimate diagnosis. The proposed system is new in the sense that it has the ability to detect prostate cancer with minimal prior processing (e.g., rough definition of the prostate region). Evaluation of the developed system is done using DWI datasets collected at seven different b -values from 40 patients (20 benign and 20 malignant). The acquisition of these DWI datasets is performed using two different scanners with different magnetic field strengths (1.5 Tesla and 3 Tesla). The resulting area under curve (AUC) after the second stage of classification is 0.99, which shows a high performance of our system without segmentation similar to the performance of up-to-date systems.
基于cnn的无分割前列腺癌检测系统
提出了一种用于前列腺癌扩散加权磁共振成像(DWI)早期诊断的计算机辅助诊断(CAD)系统。提出的系统首先定义一个感兴趣的区域,该区域包括输入DWI体积的不同切片上的前列腺。然后,对定义的感兴趣区域进行表观扩散系数(ADC)的计算、归一化和细化。最后,前列腺的良性或恶性分类是通过两个阶段的分类系统来实现的。在第一阶段,使用7个卷积神经网络(cnn)来确定每种情况的初始分类概率。然后,将这些概率馈入高斯核支持向量机以确定最终诊断。所提出的系统在某种意义上是新的,它具有以最小的先验处理(例如,前列腺区域的粗略定义)检测前列腺癌的能力。使用从40例患者(20例良性和20例恶性)收集的7个不同b值的DWI数据集对开发的系统进行评估。这些DWI数据集的采集使用了两种不同的扫描仪,具有不同的磁场强度(1.5特斯拉和3特斯拉)。第二阶段分类后得到的曲线下面积(AUC)为0.99,这表明我们的系统在没有分割的情况下具有与最新系统相似的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信