CDASH: Community Data Analytics for Social Harm Prevention

Saurabh Pandey, N. Chowdhury, Milan Patil, R. Raje, C. S. Shreyas, G. Mohler, J. Carter
{"title":"CDASH: Community Data Analytics for Social Harm Prevention","authors":"Saurabh Pandey, N. Chowdhury, Milan Patil, R. Raje, C. S. Shreyas, G. Mohler, J. Carter","doi":"10.1109/ISC2.2018.8656957","DOIUrl":null,"url":null,"abstract":"Communities are adversely affected by heterogeneous social harm events (e.g., crime, traffic crashes, medical emergencies, drug use) and police, fire, health and social service departments are tasked with mitigating social harm through various types of interventions. Smart cities of the future will need to leverage IoT, data analytics, and government and community human resources to most effectively reduce social harm. Currently, methods for collection, analysis, and modeling of heterogeneous social harm data to identify government actions to improve quality of life are needed. In this paper we propose a system, CDASH, for synthesizing heterogeneous social harm data from multiples sources, identifying social harm risks in space and time, and communicating the risk to the relevant community resources best equipped to intervene. We discuss the design, architecture, and performance of CDASH. CDASH allows users to report live social harm events using mobile hand-held devices and web browsers and flags high risk areas for law enforcement and first responders. To validate the methodology, we run simulations on historical social harm event data in Indianapolis illustrating the advantages of CDASH over recently introduced social harm indices and existing point process methods used for predictive policing.","PeriodicalId":344652,"journal":{"name":"2018 IEEE International Smart Cities Conference (ISC2)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2018.8656957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Communities are adversely affected by heterogeneous social harm events (e.g., crime, traffic crashes, medical emergencies, drug use) and police, fire, health and social service departments are tasked with mitigating social harm through various types of interventions. Smart cities of the future will need to leverage IoT, data analytics, and government and community human resources to most effectively reduce social harm. Currently, methods for collection, analysis, and modeling of heterogeneous social harm data to identify government actions to improve quality of life are needed. In this paper we propose a system, CDASH, for synthesizing heterogeneous social harm data from multiples sources, identifying social harm risks in space and time, and communicating the risk to the relevant community resources best equipped to intervene. We discuss the design, architecture, and performance of CDASH. CDASH allows users to report live social harm events using mobile hand-held devices and web browsers and flags high risk areas for law enforcement and first responders. To validate the methodology, we run simulations on historical social harm event data in Indianapolis illustrating the advantages of CDASH over recently introduced social harm indices and existing point process methods used for predictive policing.
预防社会危害的社区数据分析
社区受到各种社会伤害事件(例如犯罪、交通事故、医疗紧急情况、吸毒)的不利影响,警察、消防、卫生和社会服务部门的任务是通过各种干预措施减轻社会伤害。未来的智慧城市将需要利用物联网、数据分析以及政府和社区人力资源,以最有效地减少社会危害。目前,需要收集、分析和建模异构社会危害数据的方法,以确定政府改善生活质量的行动。在本文中,我们提出了一个系统,CDASH,用于综合来自多个来源的异构社会危害数据,识别空间和时间上的社会危害风险,并将风险传达给最有能力进行干预的相关社区资源。我们讨论了CDASH的设计、体系结构和性能。CDASH允许用户使用移动手持设备和网络浏览器报告实时社会危害事件,并为执法部门和急救人员标记高风险区域。为了验证该方法,我们对印第安纳波利斯的历史社会危害事件数据进行了模拟,说明了CDASH相对于最近引入的社会危害指数和用于预测性警务的现有点处理方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信